若雙曲線與x2+4y2=64有相同的焦點(diǎn),它的一條漸近線方程是x+
3
y=0
,則雙曲線的方程是( 。
分析:依題意,可求得x2+4y2=64的焦點(diǎn),也是雙曲線的焦點(diǎn),再由雙曲線的一條漸近線方程即可求得雙曲線的方程.
解答:解:∵x2+4y2=64?
x2
64
+
y2
16
=1,
∴該橢圓的焦點(diǎn)在x軸,且焦點(diǎn)坐標(biāo)為:(±4
3
,0);
∵雙曲線與x2+4y2=64有相同的焦點(diǎn),
∴該雙曲線的焦點(diǎn)在x軸,且焦點(diǎn)坐標(biāo)為:(±4
3
,0),可排除B,C,D;
對(duì)于A,
x2
36
-
y2
12
=1,其焦點(diǎn)坐標(biāo)為:(±4
3
,0),漸近線方程為y=±
2
3
6
x=±
3
3
x,其中之一即為x+
3
y=0,符合題意.
故選A.
點(diǎn)評(píng):本題考查橢圓的性質(zhì)與雙曲線的性質(zhì)及標(biāo)準(zhǔn)方程,求得雙曲線的焦點(diǎn)是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:天利38套《2008全國(guó)各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)文 大綱版 題型:044

如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0

(Ⅰ)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(Ⅱ)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為P,且,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,若拋物線的準(zhǔn)線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4,則拋物線的方程為(  )

(A)y2=4x (B)x2=4y

(C)y2=8x (D)x2=8y

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點(diǎn)T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點(diǎn)T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,若拋物線的準(zhǔn)線與雙曲線5x2-y2= 20的兩條漸近線圍成的三角形的面積等于,則拋物線的方程為

    A.y2=4x                  B.y2=8x                  C.x2=4y    D.x2=8y

查看答案和解析>>

同步練習(xí)冊(cè)答案