【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在與上),與,圍成三角形區(qū)域.
(1)設(shè),,求三角形區(qū)域周長的函數(shù)解析式;
(2)現(xiàn)計(jì)劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.
【答案】(1)
(2)開發(fā)區(qū)域的面積為
【解析】分析:(1)先根據(jù)直角三角形求OA,OB,AB,再相加得三角形區(qū)域周長的函數(shù)解析式; (2) 令,化簡,再根據(jù)三角函數(shù)有界性確定t范圍,解得最小值,同時求出開發(fā)區(qū)域的面積.
詳解:解:(方法一)
(1)如圖,過分別作、的垂線,垂足分別為、,因?yàn)樾〕?/span>位于小城的東北方向,且,所以,在和中,易得,
,
所以
當(dāng)時,,單調(diào)遞減
當(dāng)時,,單調(diào)遞增
所以時,取得最小值.
此時,,
的面積
答:開發(fā)區(qū)域的面積為
(方法二)
(1)在中,,即
所以
在中,
所以
(2)令,則
因?yàn)?/span>,所以,所以
由 ,得
記
因?yàn)?/span>在上單調(diào)遞減,所以當(dāng)時最小
此時,即
,
所以的面積
答:開發(fā)區(qū)域的面積為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn)。
(1)證明:;
(2)若為上的動點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)參加一項(xiàng)射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為 和P,且甲、乙兩人各射擊一次得分之和為2的概率為 .假設(shè)甲、乙兩人射擊互不影響,則P值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(2)=2,又函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)<2,則 的取值范圍是( )
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示(其中是定義域?yàn)?/span>的函數(shù)的導(dǎo)函數(shù)),則以下說法錯誤的是( ).
A.
B. 當(dāng)時,函數(shù)取得極大值
C. 方程與均有三個實(shí)數(shù)根
D. 當(dāng)時,函數(shù)取得極小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù),為常數(shù)).
()若函數(shù),在區(qū)間上單調(diào)遞減,求的取值范圍.
()當(dāng)時,判斷函數(shù)在上是否有零點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,其中是的導(dǎo)函數(shù).
(1)令,,,求的表達(dá)式;
(2)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com