已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.

(1)=1(2)k=±1.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,點在橢圓上.

(1)求橢圓的方程;
(2)點在圓上,且在第一象限,過作圓的切線交橢圓于,兩點,問:△的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓C0=1(a>b>0,a、b為常數(shù)),動圓C1:x2+y2,b<t1<a.點A1、A2分別為C0的左、右頂點,C1與C0相交于A、B、C、D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2:x2+y2與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線C上動點P(x,y)到定點F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1)求曲線C的軌跡方程;
(2)以曲線C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點M與點N,求·的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知點A(-1,1),P是動點,且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點P的軌跡C的方程;
(2)若Q是軌跡C上異于點P的一個點,且=λ,直線OP與QA交于點M,問:是否存在點P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點.

(1)設(shè)P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知過曲線上任意一點作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設(shè)、是曲線上兩個不同點,直線的傾斜角分別為,當變化且為定值時,證明直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點在軸上的雙曲線漸近線方程為;
(2)點到雙曲線上動點的距離最小值為

查看答案和解析>>

同步練習冊答案