考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計(jì)算題,證明題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)令函數(shù)f(x)=2lnx-x+
,定義域是(1,+∞);求導(dǎo)f′(x)=
-1-
=
≤0可知函數(shù)f(x)在(1,+∞)上單調(diào)遞減;從而證明.
(Ⅱ)因?yàn)閠>0,a>0,故不等式(1+
)ln(1+t)>a可化為ln(1+t)>
;問題轉(zhuǎn)化為ln(1+t)>
對(duì)任意的正實(shí)數(shù)t恒成立,構(gòu)造函數(shù)g(t)=ln(1+t)-
(t>0),從而轉(zhuǎn)化為最值問題.
(Ⅲ)要證(
)
19<
,即證19ln
<-2;即證:19ln(1+
)>2,從而證明.
解答:
解:(Ⅰ)證明:令函數(shù)f(x)=2lnx-x+
,定義域是(1,+∞);
由f′(x)=
-1-
=
≤0可知函數(shù)f(x)在(1,+∞)上單調(diào)遞減;
故當(dāng)x>1時(shí),f(x)=2lnx-x+
<f(1)=0,
即2lnx<x-
.
(Ⅱ)因?yàn)閠>0,a>0,
故不等式(1+
)ln(1+t)>a可化為ln(1+t)>
;
問題轉(zhuǎn)化為ln(1+t)>
對(duì)任意的正實(shí)數(shù)t恒成立,
構(gòu)造函數(shù)g(t)=ln(1+t)-
(t>0),
則g′(t)=
-
=
,
(1)當(dāng)0<a≤2時(shí),∵t>0,a(a-2)≤0,
∴g′(t)≥0;
即g(t)在(0,+∞)上單調(diào)遞增,
所以g(t)>g(0)=0,
即不等式ln(1+t)>
對(duì)任意的正實(shí)數(shù)t恒成立.
(2)當(dāng)a>2時(shí),a(a-2)>0;
因此t∈(0,a(a-2))時(shí),g′(t)<0,函數(shù)g(t)單調(diào)遞減;
t∈(a(a-2),+∞)時(shí),g′(t)>0,函數(shù)g(t)單調(diào)遞增,
所以g
min(t)=g(a(a-2))=2ln(a-1)-
;
∵a>2,∴a-1>1,令x=a-1>1,
由(Ⅰ)可知,g
min(t)=g(a(a-2))=2ln(a-1)-
=2lnx-x+
<0,不合題意.
綜上可得,正實(shí)數(shù)a的取值范圍是(0,2].
(Ⅲ)證明:要證(
)
19<
,
即證19ln
<-2;
即證:19ln(1+
)>2,
由(Ⅱ)的結(jié)論令a=2,
有(1+
)ln(1+t)>2對(duì)t>0恒成立,
取t=
可得不等式19ln(1+
)>2成立,
綜上,不等式(
)
19<
成立.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的綜合應(yīng)用及構(gòu)造函數(shù)證明不等式的方法應(yīng)用,屬于難題.