【選修4—1:幾何證明選講】

 如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=AC

AE=AB,BD,CE相交于點F.

 (1)求證:A,E,F(xiàn),D四點共圓;

 
 (2)若正△ABC的邊長為2,求A,E,F(xiàn),D所在圓的半徑.

 

(Ⅰ)證明:∵AE=AB,

∴BE=AB,

∵在正△ABC中,AD=AC,

∴AD=BE,

又∵AB=BC,∠BAD=∠CBE,

∴△BAD≌△CBE,

∴∠ADB=∠BEC,

即∠ADF+∠AEF=π,所以A,E,F(xiàn),D四點共圓.…(5分)

(Ⅱ)解:如圖,

取AE的中點G,連接GD,則AG=GE=AE,

∵AE=AB,

∴AG=GE=AB=

∵AD=AC=,∠DAE=60°,

∴△AGD為正三角形,

∴GD=AG=AD=,即GA=GE=GD=,

所以點G是△AED外接圓的圓心,且圓G的半徑為

由于A,E,F(xiàn),D四點共圓,即A,E,F(xiàn),D四點共圓G,其半徑為.…(10分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-1:幾何證明選講】
已知,如圖,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.
(1)求證:FA∥BE;
(2)求證:
AP
PC
=
FA
AB
;
(3)若⊙O的直徑AB=2,求tan∠PFA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2014•蘭州一模)【選修4-1:幾何證明選講】
如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AB于點E,點D是BC邊的中點,連接OD交圓O于點M.
(1)求證:O、B、D、E四點共圓;
(2)求證:2DE2=DM•AC+DM•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-1:幾何證明選講】
如圖,已知AD,BE,CF分別是△ABC三邊的高,H是垂心,AD的延長線交△ABC的外接圓于點G.求證:DH=DG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)【選修4-1:幾何證明選講】
如圖,梯形ABCD內(nèi)接于圓O,AD∥BC,且AB=CD,過點B引圓O的切線分別交DA、CA的延長線于點E、F.
(1)求證:CD2=AE•BC;
(2)已知BC=8,CD=5,AF=6,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案