如圖PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點(diǎn),E、F分別是點(diǎn)A在PB、PC上的射影,給出下列結(jié)論:
①AF⊥PB  ②AE⊥平面PBC 、跘F⊥BC 、蹺F⊥PB ⑤二面角A-PB-C的平面角是∠AFE,
其中真命題的序號(hào)是______.
∵F是點(diǎn)A在PB上的射影,∴AF⊥PB,①√;
∵PA⊥⊙O所在平面,∴PA⊥BC,∵AB是⊙O的直徑,∴BC⊥AC,∴BC⊥平面PAC,∴AE⊥BC,又∵AE⊥PC
∴AE⊥平面PBC,故②√;
∵假設(shè)AF⊥BC,則AF⊥平面PBC,又∵AE⊥平面PBC,∴E、F重合,與已知矛盾.∴③×;
∵AE⊥平面PBC,∴AE⊥PB,又PB⊥AF,∴PB⊥平面AEF,∴EF⊥PB,故④√;
∵PB⊥平面AEF,∴∠AFE是二面角A-PB-C的平面角,故⑤√;
故答案是①②④⑤
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若在數(shù)列{an}中,對(duì)任意n∈N+,都有
an+2-an+1
an+1-an
=k
(k為常數(shù)),則稱{an}為“等差比數(shù)列”.下列是對(duì)“等差比數(shù)列”的判斷:
①k不可能為0
②等差數(shù)列一定是等差比數(shù)列
③等比數(shù)列一定是等差比數(shù)列
④若an=-3n+2,則數(shù)列{an}是等差比數(shù)列;
其中正確的判斷是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列三個(gè)命題:①“若x+y=0,則x、y互為相反數(shù)”的否命題;②“若a>b,則a2>b2”的逆否命題;③已知a、b、c、d是實(shí)數(shù),“若a=b,c=d,則a+c=b+d”的逆命題.其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知p:關(guān)于x的方程4x2+4(m-2)x+1=0無實(shí)根,q:關(guān)于x的方程x2+mx+1=0的兩實(shí)根都小于1,若p∧q是真命題,且¬(p∨q)是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知m∈R,命題p:對(duì)任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命題q:存在x∈[-1,1],使得m≤ax成立
(Ⅰ)若p為真命題,求m的取值范圍;
(Ⅱ)當(dāng)a=1,若p且q為假,p或q為真,求m的取值范圍.
(Ⅲ)若a>0且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是( 。
A.一條直線和一個(gè)平面平行,它就和這個(gè)平面內(nèi)的任一條直線平行
B.平行于同一平面的兩條直線平行
C.如果一個(gè)平面內(nèi)的無數(shù)條直線平行于另一個(gè)平面,則這兩個(gè)平面平行
D.如果一個(gè)平面內(nèi)任何一條直線都平行于另一個(gè)平面,則這兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是( 。
A.|
a
|=|
b
|⇒
a
=
b
B.|
a
|>|
b
|⇒
a
b
C.
a
b
a
=
b
D.|
a
|=0⇒
a
=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:“方程
x2
1
2
+
y2
a
=1
是焦點(diǎn)在y軸上的橢圓”,命題q:“關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)實(shí)根”.若“p且q”是假命題,“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有以下四個(gè)命題:①若
1
x
=
1
y
,則x=y.②若lgx有意義,則x>0.③若x=y,則
x
=
y
.④若x<y,則x2<y2.則是真命題的序號(hào)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案