已知曲線C1、C2的極坐標方程分別為ρ=2sinθ,ρcosθ+ρsinθ+1=0,則曲線C1上的點與曲線C2上的點的最近距離為
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:把極坐標方程化為直角坐標方程,求出圓心到直線的距離為d,再把d減去半徑,即為所求.
解答: 解:由于曲線C1、C2的極坐標方程分別為ρ=2sinθ,ρcosθ+ρsinθ+1=0,
則它們的直角坐標方程分別為 x2+(y-1)2=1,x+y+1=0.
曲線C1上表示一個半徑為1的圓,圓心為(0,1),
曲線C2表示一條直線,圓心到直線的距離為d=
|0+1+1|
2
=
2
,
故曲線C1上的點與曲線C2上的點的最近距離為
2
-1,
故答案為:
2
-1.
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,點到直線的距離公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2ax2+2x-2-2a在[1,2]上有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(
2
5
x-
π
4
)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由經驗得知,在某商場付款處排隊等候付款的人數(shù)及其概率如表:
排隊人數(shù)012345人以上
概    率0.10.160.30.30.10.04
則排隊人數(shù)為2或3人的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程sinx=ax3+c•tanx(a為常數(shù),a≠0)的所有根的和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x),對任意實數(shù)x都有f(x+2)=f(x),當x∈[0,1]時,f(x)=x2,若在區(qū)間[-1,3]內,函數(shù)y=f(x)與函數(shù)y=kx+k的圖象恰有4個交點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y之間的一組數(shù)據(jù)如下:
x0123
y10764
則其回歸方程
y
=bx+a表示的直線必經過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(-1,3),
b
(x,-1),且
a
b
,則x等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“F=0”是“圓x2+y2+Dx+Ey+F=0經過原點”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案