如圖,儲油灌的表面積為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.

⑴試用半徑表示出儲油灌的容積,并寫出的范圍.
⑵當圓柱高與半徑的比為多少時,儲油灌的容積最大?
(1)(2)

試題分析:(1)解決應用題問題首先要解決閱讀問題,具體說就是要會用數(shù)學式子正確表示數(shù)量關系,本題先利用儲油灌的表面積為定值得到圓柱高與半徑的關系,再根據(jù)儲油灌的容積為半球體積與圓柱體積之和,即可得儲油灌的容積的解析式;為使思路簡潔,直接用對應公式表示,根據(jù)高及半徑為正數(shù)可得的取值范圍,(2)本題解題思路清晰,就是利用導數(shù)求最值.難點在運算上,需用字母表示高與半徑.由導數(shù)為零得,又由(1)得代入化簡得,因此.
試題解析:⑴,,       3分
;            7分
,令,得,列表










極大值即最大值

11分
∴當時,體積取得最大值,此時.    13分
答:儲油灌容積,當時容積取得最大值. 15分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱ABCA1B1C1中,CACB,ABAA1,∠BAA1=60°.

(1)證明:ABA1C
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的體積;
(3)若平面ABC⊥平面AA1B1BABCB=2,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

長方體的三個相鄰面的面積分別為2,3,6,這個長方體的頂點都在同一個球面上,則這個球的表面積為(  )
A.πB.56πC.14πD.64π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個六棱柱的底面是正六邊形,其側棱垂直底面. 已知該六棱柱的頂點都在同一個球面上,且該六棱柱的體積為, 底面周長為3, 則這個球的體積為__________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知一個正方體的八個頂點都在同一個球面上,若此正方體的棱長為,那么這個球的表面積為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

球的表面積與它的內接正方體的表面積之比是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側面積為,則圓臺較小底面的面積為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱柱種側棱垂直于底面,,,且三棱柱的體積為3,則三棱柱的外接球的表面積為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在三棱柱中,分別是的中點,設三棱錐的體積為,三棱柱的體積為,則       .

查看答案和解析>>

同步練習冊答案