已知函數(shù)f(x)=x3-3x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)在區(qū)間[-3,2]上的最值.
(1) (-1,1) (2) 當(dāng)x=-3時, 最小值為-18。當(dāng)x=-1或2時, 最大值為2
【解析】(1)∵f(x)=x3-3x,
∴f'(x)=3x2-3=3(x+1)(x-1).
令f'(x)=0,得x=-1或x=1.
若x∈(-∞,-1)∪(1,+∞),則f'(x)>0,
故f(x)的單調(diào)增區(qū)間為(-∞,-1),(1,+∞),
若x∈(-1,1),則f'(x)<0,故f(x)的單調(diào)減區(qū)間為(-1,1).
(2)∵f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,
∴當(dāng)x=-3時,f(x)在區(qū)間[-3,2]取到最小值為-18.
∴當(dāng)x=-1或2時,f(x)在區(qū)間[-3,2]取到最大值為2.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)四十 第六章第六節(jié)練習(xí)卷(解析版) 題型:填空題
已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任意的m,n∈N*都有:
(1)f(m,n+1)=f(m,n)+2.
(2)f(m+1,1)=2f(m,1).
給出以下三個結(jié)論:①f(1,5)=9;②f(5,1)=16;
③f(5,6)=26.其中正確結(jié)論的序號有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十六第二章第十三節(jié)練習(xí)卷(解析版) 題型:填空題
(x2-x)dx= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十八第三章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知cosα=-,角α是第二象限角,則tan(2π-α)等于( )
(A) (B)- (C) (D)-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十八第三章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
給出下列各函數(shù)值:
①sin(-1000°);②cos(-2200°);③tan(-10);
④.
其中符號為負的是( )
(A)① (B)② (C)③ (D)④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十五第二章第十二節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)y=xlnx在區(qū)間(0,1)上是( )
(A)單調(diào)增函數(shù)
(B)在(0,)上是減函數(shù),在(,1)上是增函數(shù)
(C)單調(diào)減函數(shù)
(D)在(0,)上是增函數(shù),在(,1)上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十二第二章第九節(jié)練習(xí)卷(解析版) 題型:選擇題
某學(xué)校制定獎勵條例,對在教育教學(xué)中取得優(yōu)異成績的教職工實行獎勵,其中有一個獎勵項目是針對學(xué)生高考成績的高低對任課教師進行獎勵的.獎勵公式為f(n)=k(n)(n-10),n>10(其中n是任課教師所在班級學(xué)生的該任課教師所教學(xué)科的平均成績與該科省平均分之差,f(n)的單位為元),而k(n)=現(xiàn)有甲、乙兩位數(shù)學(xué)任課教師,甲所教的學(xué)生高考數(shù)學(xué)平均分超出省平均分18分,而乙所教的學(xué)生高考數(shù)學(xué)平均分超出省平均分21分,則乙所得獎勵比甲所得獎勵多( )
(A)600元 (B)900元 (C)1600元 (D)1700元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十九第三章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)y=4sin(2x+)的一個單調(diào)區(qū)間是 ( )
(A)[,] (B)[-,]
(C)[0,] (D)[0,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)十一第二章第八節(jié)練習(xí)卷(解析版) 題型:解答題
已知二次函數(shù)f(x)=x2+(2a-1)x+1-2a.
(1)判斷命題“對于任意的a∈R(R為實數(shù)集),方程f(x)=1必有實數(shù)根”的真假,并寫出判斷過程.
(2)若y=f(x)在區(qū)間(-1,0)及(0,)內(nèi)各有一個零點,求實數(shù)a的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com