已知橢圓的上頂點為,左焦點為,直線與圓相切.過點的直線與橢圓交于兩點.
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時,求直線的方程.
(1)(2)

試題分析:解:(I)將圓的一般方程化為標(biāo)準(zhǔn)方程,則圓的圓心,半徑.由得直線的方程為.
由直線與圓相切,得,
所以(舍去).
當(dāng)時,,
故橢圓的方程為.  5分
(II)由題意可知,直線的斜率存在,設(shè)直線的斜率為,
則直線的方程為.
因為點在橢圓中
所以對任意,直線都與橢圓C交于不同的兩點

設(shè)點P,Q的坐標(biāo)分別為,則


又因為點A到直線的距離
所以的面積為   10分
設(shè),則

因為,
所以當(dāng)時,的面積達(dá)到最大,
此時,即.
故當(dāng)的面積達(dá)到最大時,直線的方程為. 12分
點評:本試題主要是考查了直線與橢圓的位置關(guān)系的綜合運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率為(    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以,為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
點(1,)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切是圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的一條漸近線方程是y=,它的一個焦點在拋物線的準(zhǔn)線上,則雙曲線的方程為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知與拋物線交于A、B兩點,
(1)若|AB|="10," 求實數(shù)的值。
(2)若, 求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線焦點的直線與拋物線交于兩點,,且中點的縱坐標(biāo)為,則的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m是常數(shù),若是雙曲線的一個焦點,則m的值為(    )
A.16B.34C.16或34D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點,,動點滿足,由點軸作垂線段,垂足為,點滿足,點的軌跡為.
(1)求曲線的方程;
(2)過點作直線與曲線交于,兩點,點滿足為原點),求四邊形面積的最大值,并求此時的直線的方程.

查看答案和解析>>

同步練習(xí)冊答案