已知點P為圓C:(x+1)2+y2=9上一點,A(1,0)為圓C內(nèi)一點,線段AP的中垂線交半徑CP于點M,求點M的軌跡方程.
M的軌跡方程為+=1.
如圖所示,由于M是AP中垂線上的點,

∴|MP|=|MA|.
∴|MC|+|MA|=|MC|+|MP|=R=3.
由橢圓定義可知
點M的軌跡為以C(-1,0)、A(1,0)為兩焦點的橢圓,且半焦距c=1,a=.
∴b2=.
∴M的軌跡方程為+=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左、右焦點.
(Ⅰ)若P是該橢圓上的一個動點,求的最大值和最小值;
(Ⅱ)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓被直線截得的弦長為                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長短軸之比為三比二,一個焦點是(0.-2) 中心在原點的橢圓方程是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)定點F1(0,-3)、F2(0,3),動點P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動點P的軌跡是(   )
A.橢圓B.線段C.不存在D.以上三種情況均存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,一個頂點A(0,-1),且右焦點到右準線的距離為.
(1)求橢圓的方程.
(2)試問是否能找到一條斜率為k(k≠0)的直線l,使l與橢圓交于不同兩點M、N且滿足|AM|=|AN|?若這樣的直線存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓C:+y2=1,則與橢圓C關(guān)于直線y=x成軸對稱的曲線的方程是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在面積為1的△PMN中,tan∠M=,tan∠N=-2,建立適當(dāng)坐標系,求出以MN為焦點且過P點的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

F1、F2是橢圓+y2=1的左、右焦點,點P在橢圓上運動,則|PF1|·|PF2|的最大值是_________________.

查看答案和解析>>

同步練習(xí)冊答案