已知直線m與四邊形ABCD的三邊AB,AD,BC所在的直線分別交于點(diǎn)E,F(xiàn),G.求證:四邊形ABCD是平面四邊形.

答案:
解析:

  證明:因?yàn)锳B∩m=E,

  可設(shè)AB與m確定一個(gè)平面α,

  所以A∈α,B∈α.

  因?yàn)镚∈m,mα,

  所以G∈α.

  所以BGα.

  同理可證AFα.

  又因?yàn)镃∈BG,D∈AF,

  所以C∈α,D∈α,

  所以點(diǎn)A,B,C,D均在平面α內(nèi),

  所以四邊形ABCD是平面四邊形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•臺(tái)州二模)已知兩點(diǎn)M(2,3),N(2,-3)在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上,斜率為
1
2
的直線l與橢圓C交于點(diǎn)A,B(A,B在直線MN兩側(cè)),且四邊形MANB面積的最大值為12
3
.w
(I)求橢圓C的方程;
(II)若點(diǎn)N到直線AM,BM距離的和為6
2
,試判斷△MAB的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)已知點(diǎn)M(-5,0),F(xiàn)(1,0),點(diǎn)K滿足
MK
=2
KF
,P是平面內(nèi)一動(dòng)點(diǎn),且滿足|
PF
|•|
KF
|=
PK
FK

(1)求P點(diǎn)的軌跡C的方程;
(2)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與曲線C相交于點(diǎn)A,B,l2與曲線C相交于點(diǎn)D,E,求四邊形ADBE的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)設(shè)向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,滿足|
s
|+|
t
 |=2
2
,已知兩定點(diǎn)A(1,0),B(-1,0),動(dòng)點(diǎn)P(x,y),
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知直線l:(a∈R),圓O:x2+y2=4.
(Ⅰ)求證:直線l與圓O相交;
(Ⅱ)判斷直線l被圓O截得的弦何時(shí)最短?并求出最短弦的長(zhǎng)度;
(Ⅲ)如圖,已知AC、BD為圓O的兩條相互垂直的弦,垂足為M(1,),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年上海市十三校高三(下)第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)向量,滿足,已知兩定點(diǎn)A(1,0),B(-1,0),動(dòng)點(diǎn)P(x,y),
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長(zhǎng)為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案