如圖,已知橢圓的中心在坐標原點,焦F1F2x軸上,長軸A1A2的長為4,左準線lx軸的交點為M,= 2∶1.
1、求橢圓的方程;
2、若點P在直線l上運動,求的最大值.
(1) 由已知得2a = 4,∴ a = 2
    ∴      又∵ a = 2
c = 1或c = 2(舍去)

∴ 橢圓方程為
(2) 設P(– 4,y)(y > 0)    ∵ F1(– 1,0),F2(1,0)


的最大值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點在軸上,短軸長為4,離心率為.
(1)求橢圓的標準方程;
2)若直線l過該橢圓的左焦點,交橢圓于M、N兩點,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,焦點在軸上的橢圓,離心率,且經過拋物線的焦點.
(1)求橢圓的標準方程;
(2)若過點的直線(斜率不等于零)與橢圓交于不同的兩點
之間),面積之比為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,的長軸是短軸的2倍,則m=       ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,它的左右兩個焦點分別為,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為
(1) 求橢圓的方程。
(2)設橢圓的一個頂點為直線交橢圓于另一點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P是直角坐標平面內的動點,點P到直線的距離為d1,到點F(– 1,0)的距離為d2,且
(1)   求動點P所在曲線C的方程;
(2)   直線過點F且與曲線C交于不同兩點AB(點AB不在x軸上),分別過AB點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);
(3)   記,(A、B、是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是橢圓的兩焦點,為橢圓上一點,若,則離心率 的最小值是_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,過點作直線與橢圓交于、兩點.
(1)  若點平分線段,試求直線的方程;
設與滿足(1)中條件的直線平行的直線與橢圓交于兩點,與橢圓交于點,與橢圓交于點,求證://

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的方程為,它的兩個焦點為F1、F2,若| F1F2|=8, 弦AB過F1 ,則△ABF2的周長為    ▲    

查看答案和解析>>

同步練習冊答案