有以下命題:設(shè)an1,an2,…anm是公差為d的等差數(shù)列{an}中任意m項(xiàng),若(p∈N*,r∈N且r<m),則d;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等差平均項(xiàng).
(1)已知等差數(shù)列{an}的通項(xiàng)公式為an=2n,根據(jù)上述命題,則a1,a3,a10,a18的等差平均項(xiàng)為:    ;
(2)將上述真命題推廣到各項(xiàng)為正實(shí)數(shù)的等比數(shù)列中:設(shè)an1,an2,…anm是公比為q的等比數(shù)列{an}中任意m項(xiàng),若(p∈N*,r∈N且r<m),則    ;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等比平均項(xiàng).
【答案】分析:(1)利用新定義,結(jié)合等差數(shù)列{an}的通項(xiàng)公式為an=2n,可求a1,a3,a10,a18的等差平均項(xiàng);
(2)等差數(shù)列研究和問(wèn)題,類比等比數(shù)列則研究積問(wèn)題,通過(guò)計(jì)算可以得結(jié)論.
解答:解:(1)由題意,a1,a3,a10,a18的等差平均項(xiàng)為;
(2)由題意,類比得
故答案為16;
點(diǎn)評(píng):本題考查新定義的理解,同時(shí)考查了類比思想的運(yùn)用,關(guān)鍵是理解新定義,同時(shí)明確等差數(shù)列與等比數(shù)列之間類比得方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下命題:設(shè)an1,an2,…anm是公差為d的等差數(shù)列{an}中任意m項(xiàng),若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),則
an1+an2+…+anm
m
=ap+
r
m
d;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等差平均項(xiàng).
(1)已知等差數(shù)列{an}的通項(xiàng)公式為an=2n,根據(jù)上述命題,則a1,a3,a10,a18的等差平均項(xiàng)為:
 
;
(2)將上述真命題推廣到各項(xiàng)為正實(shí)數(shù)的等比數(shù)列中:設(shè)an1,an2,…anm是公比為q的等比數(shù)列{an}中任意m項(xiàng),若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),則
 
;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等比平均項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下真命題:設(shè)an1an2,…,anm是公差為d的等差數(shù)列{an}中的任意m個(gè)項(xiàng),若
n1+n2+…+nm
m
=p+
r
m
(0≤r<m,p、r、m∈N或r=0)①,則有
an1+an2+…+anm
m
=ap+
r
m
d
②,特別地,當(dāng)r=0時(shí),稱apan1,an2,…,anm的等差平均項(xiàng).
(1)當(dāng)m=2,r=0時(shí),試寫出與上述命題中的(1),(2)兩式相對(duì)應(yīng)的等式;
(2)已知等差數(shù)列{an}的通項(xiàng)公式為an=2n,試根據(jù)上述命題求a1,a3,a10,a18的等差平均項(xiàng);
(3)試將上述真命題推廣到各項(xiàng)為正實(shí)數(shù)的等比數(shù)列中,寫出相應(yīng)的真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省衡陽(yáng)八中高三(下)第九次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

有以下命題:設(shè)an1,an2,…anm是公差為d的等差數(shù)列{an}中任意m項(xiàng),若(p∈N*,r∈N且r<m),則d;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等差平均項(xiàng).
(1)已知等差數(shù)列{an}的通項(xiàng)公式為an=2n,根據(jù)上述命題,則a1,a3,a10,a18的等差平均項(xiàng)為:    ;
(2)將上述真命題推廣到各項(xiàng)為正實(shí)數(shù)的等比數(shù)列中:設(shè)an1,an2,…anm是公比為q的等比數(shù)列{an}中任意m項(xiàng),若(p∈N*,r∈N且r<m),則    ;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等比平均項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:期末題 題型:填空題

有以下命題:設(shè)an1,an2,…anm是公差為d的等差數(shù)列{an}中任意m項(xiàng),若(p∈N*,r∈N且r<m),則d;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等差平均項(xiàng).
(1)已知等差數(shù)列{an}的通項(xiàng)公式為an=2n,根據(jù)上述命題,則a1,a3,a10,a18的等差平均項(xiàng)為:(    );
(2)將上述真命題推廣到各項(xiàng)為正實(shí)數(shù)的等比數(shù)列中:設(shè)an1,an2,…anm是公比為q的等比數(shù)列{an}中任意m項(xiàng),若(p∈N*,r∈N且r<m),則(    );特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等比平均項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案