(本小題滿分14分)
設(shè)數(shù)列,
其中
(I)求證:
(II)求數(shù)列的通項(xiàng)公式;
(III)設(shè)的取值范圍,使得對(duì)任意
(1)見解析(2)(3)
(I)由已知,當(dāng)
                                                             …………1分
當(dāng)  ①
      ②                              …………2分
由①—②得,
                                                       …………5分
當(dāng)適合上式。        …………6分
(II)由(I)知  ③
當(dāng), ④                                    …………7分
由③—④得,
是首項(xiàng)為1,公差為1的等差數(shù)列。
                                                                              …………9分
(III)
要使恒成立,
只需恒成立,……11分
恒成立。                                                         …………12分
                                                    …………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,是首項(xiàng)為,公比為的等比數(shù)列,且滿足,其中.
(Ⅰ)求a的值
(Ⅱ)若數(shù)列與數(shù)列有公共項(xiàng),將所有公共項(xiàng)按原順序排列后構(gòu)成一個(gè)新數(shù)列,求數(shù)列的通項(xiàng)公式;
(Ⅲ)記(Ⅱ)中數(shù)列的前項(xiàng)之和為,求證:
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)  已知:)是方程的兩根,且.  (1)求的值;(2)設(shè),求證:;(3)求證:對(duì) w。.w..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在數(shù)列中,.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)設(shè)函數(shù),且數(shù)列滿足= 1,(n∈N,);求數(shù)列的通項(xiàng)公式.
(2)設(shè)等差數(shù)列、的前n項(xiàng)和分別為,且 ,, ;求常數(shù)A的值及的通項(xiàng)公式.
(3)若,其中、即為(1)、(2)中的數(shù)列的第項(xiàng),試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列的前n項(xiàng)和為,已知,,則
A.38B.20C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列是公差為的等差數(shù)列,其前項(xiàng)和為,并有;那么,對(duì)于公比為的等比數(shù)列,設(shè)其前項(xiàng)積為,則,滿足的一個(gè)關(guān)系式是                                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列的前項(xiàng)和,且,則數(shù)列的前11項(xiàng)和為
A.一45B.一50 C.一55D.— 66

查看答案和解析>>

同步練習(xí)冊(cè)答案