設(shè)m為實(shí)數(shù),函數(shù)f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時(shí),>2+2mx+1.
(Ⅰ)增區(qū)間,減區(qū)間;(Ⅱ)構(gòu)造函數(shù),再證明即可得證.

試題分析:(Ⅰ)利用求導(dǎo)的方法求得單調(diào)區(qū)間,再求極值;(Ⅱ)先構(gòu)造,,再證得,即上為增函數(shù),所以,故.
試題解析:(Ⅰ),令可得
易知時(shí),為增函數(shù),
時(shí)為減函數(shù),
所以函數(shù)有極大值,無(wú)極小值,極大值為.        (6分)
(Ⅱ)令,則

由(Ⅰ)知,當(dāng)時(shí), ,所以
上為增函數(shù),
所以,故.              (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,且在點(diǎn)(1,)處的切線(xiàn)方程為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程有且僅有四個(gè)解,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],[0,1],使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線(xiàn)在點(diǎn)處的切線(xiàn)方程是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù),且,,下列命題:
①若,則
②存在,,使得
③若,,則
④對(duì)任意的,,都有
其中正確的是_______________.(填寫(xiě)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,則點(diǎn)的坐標(biāo)為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)的圖像在點(diǎn)處的切線(xiàn)斜率為,則的值是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù), 
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(3)若,使成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線(xiàn)的切線(xiàn),則的值是    

查看答案和解析>>

同步練習(xí)冊(cè)答案