已知圓C:(x-1)2+y2=r2(r>1),設(shè)A為圓Cx軸負(fù)半軸的交點(diǎn),過(guò)點(diǎn)A作圓C的弦AM,并使弦AM的中點(diǎn)恰好落在y軸上.

(1)當(dāng)r在(1,+∞)內(nèi)變化時(shí),求點(diǎn)M的軌跡E的方程;

(2)設(shè)軌跡E的準(zhǔn)線為l,Nl上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作軌跡E的兩條切線,切點(diǎn)分別為P,Q.求證:直線PQ必經(jīng)過(guò)x軸上的一個(gè)定點(diǎn)B,并寫(xiě)出點(diǎn)B的坐標(biāo).

答案:
解析:

  解:(1)設(shè),則的中點(diǎn).因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4413/0020/114f99cc99b847247826b468a802c04c/C/Image202.gif" width=45 height=21>,=(1,),=(x,).

  在⊙中,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4413/0020/114f99cc99b847247826b468a802c04c/C/Image209.gif" width=73 height=18>,所以,·=0,所以

  所以,點(diǎn)的軌跡的方程為:

  (2)軌跡的準(zhǔn)線

  所以,可設(shè),過(guò)的斜率存在的直線方程為:

  由.由得:

  設(shè)直線,斜率分別為,,則①且

  所以,所以,直線的方程:

  令,則

  由①知,即直線過(guò)定點(diǎn)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(mR).

(1)證明不論m取什么實(shí)數(shù),直線l與圓恒交于兩點(diǎn);

(2)求直線被圓C截得的弦長(zhǎng)最小時(shí)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修二4.2直線、圓的位置關(guān)系練習(xí)卷(一) 題型:解答題

已知圓C:(x-1) +(y-2) =25,直線L:(2m+1)x+(m+1)y-7m-4=0(m∈R)

(1)證明:無(wú)論m取什么實(shí)數(shù),L與圓恒交于兩點(diǎn).

(2)求直線被圓C截得的弦長(zhǎng)最小時(shí)L的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省長(zhǎng)春市高一上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)證明:直線l與圓相交;

(2)求直線l被圓截得的弦長(zhǎng)最小時(shí)的直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+(y-2)2=2,點(diǎn)P(2,-1),過(guò)P點(diǎn)作圓C的切線PA、PBA、B為切點(diǎn).

(1)求PA、PB所在直線的方程;

(2)求切線長(zhǎng)|PA|;

(3)求∠APB的正弦值;

(4)求AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+y2=1與直l:x-2y+1=0相交于A、B兩點(diǎn),則|AB|    .

查看答案和解析>>

同步練習(xí)冊(cè)答案