設
是等差數(shù)列
的前
項和,若
,則
=( )
A.1 | B.-1 | C.2 | D. |
試題分析:因為
,由等差數(shù)列前
項和公式得,
,選A.
項和公式;2.等差數(shù)列的性質(zhì),對任意的
則
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
前n項和為
成等差數(shù)列.
(I)求數(shù)列
的通項公式;
(II)數(shù)列滿足
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
滿足
,
,數(shù)列
滿足
.
(1)證明數(shù)列
是等差數(shù)列并求數(shù)列
的通項公式;
(2)求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知等差數(shù)列{
},滿足
,則此數(shù)列的前
項的和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是等差數(shù)列,
為其前
項和,若
,O為坐標原點,點
,點
,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設等差數(shù)列
的前
項和為
,已知
,
,則數(shù)列
的公差
為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經(jīng)在沙灘上研究數(shù)學問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類,如圖4中的實心點個數(shù)1,5,12,22,…, 被稱為五角形數(shù),其中第1個五角形數(shù)記作
,第2個五角形數(shù)記作
,第3個五角形數(shù)記作
,第4個五角形數(shù)記作
,……,若按此規(guī)律繼續(xù)下去,若
,則
.
1 5 12 22
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列
為等差數(shù)列,若
,
(
,
),則
.類比上述結論,對于等比數(shù)列
(
),若
,
(
,
),則可以得到
( )
查看答案和解析>>