【題目】已知橢圓的離心率為, 是橢圓上任意一點,且點到橢圓的一個焦點的最大距離等于.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于不同兩點,設為橢圓上一點,是否存在整數(shù),使得(其中為坐標原點)?若存在,試求整數(shù)的所有取值;若不存在,請說明理由.
【答案】(Ⅰ);(Ⅱ)整數(shù)的所有取值為-1,0,1.
【解析】試題分析:(Ⅰ)由,解得,則橢圓方程可求;
(Ⅱ)設出直線方程,和橢圓聯(lián)立后化為關于的一元二次方程,由判別式大于求出的范圍,利用根與系數(shù)關系得到兩點的橫坐標的和與積,代入后得到點的坐標,把點坐標代入橢圓方程后得到與的關系,由的范圍確定的范圍.
試題解析:(Ⅰ)設橢圓的半焦距為,則由題意知
,解得,
所以橢圓的方程為.
(Ⅱ)結論:存在整數(shù),使得.理由如下:
由題意知直線的斜率存在.
設, , , ,
由方程組,消去整理得.
∵直線與橢圓有兩個不同的公共點,
∴ ,解得.
而, ,
∵,
∴,
∴, .
∵點在橢圓上,∴,
∴ ,即,解得,
∴整數(shù)的所有取值為-1,0,1.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)/ (為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為 .
(1)求的值及函數(shù)的極值;
(2)證明:當時, ;
(3)證明:對任意給定的正數(shù),總存在,使得當,恒有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年8月12日天津發(fā)生危化品重大爆炸事故,造成重大人員和經(jīng)濟損失.某港口組織消防人員對該港口的公司的集裝箱進行安全抽檢,已知消防安全等級共分為四個等級(一級為優(yōu),二級為良,三級為中等,四級為差),該港口消防安全等級的統(tǒng)計結果如下表所示:
現(xiàn)從該港口隨機抽取了家公司,其中消防安全等級為三級的恰有20家.
(Ⅰ)求的值;
(Ⅱ)按消防安全等級利用分層抽樣的方法從這家公司中抽取10家,除去消防安全等級為一級和四級的公司后,再從剩余公司中任意抽取2家,求抽取的這2家公司的消防安全等級都是二級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的月固定成本為10(萬元),每生產(chǎn)件,需另投入成本為(萬元).當月產(chǎn)量不足30件時, (萬元);當月產(chǎn)量不低于30件時, (萬元).因設備問題,該廠月生產(chǎn)量不超過50件.現(xiàn)已知此商品每件售價為5萬元,且該廠每個月生產(chǎn)的商品都能當月全部銷售完.
(1)寫出月利潤(萬元)關于月產(chǎn)量(件)的函數(shù)解析式;
(2)當月產(chǎn)量為多少件時,該廠所獲月利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c已知ccosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統(tǒng)計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學選取若干大學生志愿者,某記者在該大學隨機調(diào)查了1000名大學生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合計 | |
男大學生 | 610 | ||
女大學生 | 90 | ||
合計 | 800 |
(1) 根據(jù)題意完成表格;
(2) 是否有的把握認為愿意做志愿者工作與性別有關?
參考公式及數(shù)據(jù): ,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,已知第一道審核、第二道審核、第三道審核通過的概率分別為 ,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.
(1)求審核過程中只進行兩道程序就停止審核的概率;
(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: ,長軸的右端點與拋物線: 的焦點重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作直線交拋物線于, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com