【題目】如圖:橢圓的頂點為,左右焦點分別為,,
(1)求橢圓的方程;
(2)過右焦點的直線與橢圓相交于兩點,試探究在軸上是否存在定點,使得為定值?若存在求出點的坐標,若不存在請說明理由?
科目:高中數學 來源: 題型:
【題目】如圖,半徑為2的圓內有兩條圓弧,一質點M自點A開始沿弧A-B-C-O-A-D-C做勻速運動,則其在水平方向(向右為正)的速度的圖像大致為( )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合.對于的一個子集,若存在不大于的正整數,使得對于中的任意一對元素,都有,則稱具有性質.
(Ⅰ)當時,試判斷集合和是否具有性質?并說明理由.
(Ⅱ)若時,
①若集合具有性質,那么集合是否一定具有性質?并說明理由;
②若集合具有性質,求集合中元素個數的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條規(guī)定:機動車行經人行橫道時,應當減速慢行;遇到行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設備所抓拍的6個月內駕駛員不“禮讓斑馬線”行為的統(tǒng)計數據:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請根據表中所給前5個月的數據,求不“禮讓斑馬線”的駕駛員人數與月份之間的回歸直線方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數的實際人數與預測人數之差小于5,則稱該十字路口“禮讓斑馬線”情況達到“理想狀態(tài)”.試根據(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調查,求抽取的兩人恰好來自同一月份的概率.
參考公式: ,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函數h(x)的單調區(qū)間;
(2)令f(x)=u(x)﹣v(x),若函數f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數的底數)求x1x2的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】哈師大附中高三學年統(tǒng)計甲、乙兩個班級一模數學分數(滿分150分),每個班級20名同學,現有甲、乙兩位同學的20次成績如下列莖葉圖所示:
(I)根據基葉圖求甲、乙兩位同學成績的中位數,并將乙同學的成績的頻率分布直方圖填充完整;
(Ⅱ)根據基葉圖比較甲乙兩位同學數學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可)
(Ⅲ)現從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設事件為“其中2 個成績分別屬于不同的同學”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,記為的導函數.
(1)若的極大值為,求實數的值;
(2)若函數,求在上取到最大值時的值;
(3)若關于的不等式在上有解,求滿足條件的正整數的集合.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com