將4名實習(xí)教師分配到高一年級三個班實習(xí),每班至少安排一名教師,則不同的分配方案有( 。┓N.
A、12B、36C、72D、108
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)分步計數(shù)原理,合理的進行分步,把其中的2名教師看做一個元素,然后進行全排列,問題即可解得.
解答: 解:第一步從4名實習(xí)教師中選出2名組成一個復(fù)合元素,共有
C
2
4
=6種,
第二步把3個元素(包含一個復(fù)合元素)安排到三個班實習(xí)有
A
3
3
=6種,
根據(jù)分步計數(shù)原理不同的分配方案有6×6=36種.
故選:B.
點評:本題主要考查了分步計數(shù)原理,解決排列組合的混合問題,先選后排是基本的指導(dǎo)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某商品銷售量y(件)與銷售價格x(元/件)負相關(guān),則其回歸方程可能是( 。
A、
y
=5x-10
B、
y
=5x+10
C、
y
=-5x-10
D、
y
=-5x+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(1,1)作曲線 y=x3的切線的方程為( 。
A、3x-y-2=0
B、x-y=0
C、3x-y-2=0或3x-4y+l=0
D、3x-y-2=0或x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個函數(shù)圖象和函數(shù)的四個關(guān)系式:

①f(x+y)=f(x)+f(y);
②g(x+y)=g(x)•g(y);
③u(x•y)=u(x)+u(y);
④v(x•y)=v(x)•v(y),已知每個函數(shù)圖象都有滿足其中的一個關(guān)系式,則它們之間的對應(yīng)是(  )
A、①→a ②→d ③→c ④→b
B、①→b ②→c ③→a ④→d
C、①→c ②→a ③→b ④→d
D、①→d ②→a ③→b ④→c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AB是半徑為1的圓的直徑,在AB上的任意一點M,過點M垂直于AB的弦,則弦長大于
3
的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)(1+i)(1+ai)(a∈R,i是虛數(shù)單位)是純虛數(shù),則a=( 。
A、1B、-1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記直線x-3y-l=0的傾斜角為α,曲線y=1nx在(2,1n2)處切線的傾斜角為β,則α+β=( 。
A、
π
2
B、
π
4
C、
4
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

135°化成弧度為( 。
A、
4
B、
4
C、
8
D、
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑,點D是⊙O上的一點,點C是弧AD的中點,弦CE⊥AB于F.GD是⊙O的切線,且與EC的延長線相交于點G,連接AD,交CE于點P.
(Ⅰ)證明:△ACD∽△APC;
(Ⅱ)若GD=
2
+1,GC=1,求PE的長.

查看答案和解析>>

同步練習(xí)冊答案