已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

(Ⅱ)若上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

解:(Ⅰ) 易知,函數(shù)的定義域?yàn)?sub>.

當(dāng)時(shí),.  

當(dāng)x變化時(shí),的值的變化情況如下表:  

x

(0,1)

1

(1,+∞)

0

遞減

極小值

遞增

由上表可知,函數(shù)的單調(diào)遞減區(qū)間是(0,1)、單調(diào)遞增區(qū)間是(1,+∞)、極小值是.               

(Ⅱ) 由,得.

若函數(shù)上的單調(diào)增函數(shù),則上恒成立,即不等式上恒成立.也即上恒成立.

,則.

當(dāng)時(shí),,

上為減函數(shù),

.         

所以.

的取值范圍為.  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a+log2x(當(dāng)x≥2時(shí))
x2-4
x-2
(當(dāng)x<2時(shí))
在點(diǎn)x=2處
連續(xù),則常數(shù)a的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x•2x,當(dāng)f'(x)=0時(shí),x=
-
1
ln2
-
1
ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax3+bx2,當(dāng)x=1時(shí),有極大值3
(1)求函數(shù)的解析式
(2)寫(xiě)出它的單調(diào)區(qū)間
(3)求此函數(shù)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=cosx+x,當(dāng)x∈[-
π
2
π
2
]
時(shí),該函數(shù)的值域是
[-
π
2
π
2
]
[-
π
2
,
π
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a+log2x(當(dāng)x≥2時(shí))
x2-4
x-2
(當(dāng)x<2時(shí))
在點(diǎn)x=2處
連續(xù),則常數(shù)a的值是
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案