①在極坐標(biāo)系中,點(diǎn)A(2,)到直線:的距離為
②(不等式選講選做題) 設(shè)函數(shù)f(x)=|x-2|+x,g(x)=|x+1|,則g(x)<f(x)成立時(shí)x的取值范圍
(1)1;(2)
解析試題分析:把點(diǎn)A的極坐標(biāo)化為直角坐標(biāo),把直線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式求出A到直線的距離,由于點(diǎn)A(2,)的直角坐標(biāo)為(1,-),而直線:為x,那么結(jié)合點(diǎn)到直線的距離公式可知為d=1
(2)根據(jù)
設(shè)函數(shù)f(x)=|x-2|+x,g(x)=|x+1|,則g(x)<f(x)成立時(shí),則即為|x+1|<|x-2|+x,去掉絕對(duì)值符號(hào)可知,不等式的解集為x>2,得到x>3,x<-1時(shí),得到-3<x<-1,當(dāng)-1時(shí),則可知解集為-1<x<1,故可知不等式的解集
考點(diǎn):極坐標(biāo)方程化為直角坐標(biāo)方程
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,以及絕對(duì)值不等式的求解,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.若點(diǎn)為直線上一點(diǎn),點(diǎn)為曲線為參數(shù))上一點(diǎn),則的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在極坐標(biāo)系(ρ,θ)(0 ≤ θ<2π)中,曲線= 與 的交點(diǎn)的極坐標(biāo)
為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸)中,圓的極坐方程為,則與的位置關(guān)系是______(在“相交、相離、內(nèi)切、外切、內(nèi)含”中選擇一個(gè)你認(rèn)為正確的填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com