已知函數(shù),且是函數(shù)的一個極小值點.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值和最小值.

(Ⅰ);(Ⅱ)當時,有最小值;當時,有最大值.

解析試題分析:(Ⅰ)先求函數(shù)的導函數(shù),因為是函數(shù)的一個極小值點,所以,即可求得的值。(Ⅱ)由(Ⅰ)知,,求導,在令導數(shù)等于0,討論導數(shù)的正負可得函數(shù)的單調區(qū)間,根據(jù)函數(shù)的單調區(qū)間可求其最值。
試題解析:解:(Ⅰ).                                 2分
是函數(shù)的一個極小值點,
.
,解得.                                 4分
經(jīng)檢驗,當時,是函數(shù)的一個極小值點.
實數(shù)的值為.                                       5分
(Ⅱ)由(Ⅰ)知,.
.
,得.                            6分
上變化時,的變化情況如下:
                                                         9分
時,有最小值 
時,有最大值.                      11分
考點:1求導數(shù);2用導數(shù)研究函數(shù)的單調性。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
⑴當時,①若的圖象與的圖象相切于點,求的值;
上有解,求的范圍;
⑵當時,若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圖像過點,且在處的切線方程是.
(1)求的解析式;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(Ⅰ)若,求函數(shù)的極值點;
(Ⅱ)若在區(qū)間內單調遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)若存在使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,現(xiàn)要在邊長為的正方形內建一個交通“環(huán)島”.正方形的四個頂點為圓心在四個角分別建半徑為不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.

(1)求的取值范圍;(運算中
(2)若中間草地的造價為,四個花壇的造價為,其余區(qū)域的造價為,當取何值時,可使“環(huán)島”的整體造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),(其中為常數(shù));
(Ⅰ)如果函數(shù)有相同的極值點,求的值;
(Ⅱ)設,問是否存在,使得,若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
(Ⅲ)記函數(shù),若函數(shù)有5個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),設
(Ⅰ)求函數(shù)的單調區(qū)間
(Ⅱ)若以函數(shù)圖象上任意一點為切點的切線的斜率恒成立,求實數(shù)的最小值
(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有四個不同交點?若存在,求出實數(shù)的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案