【題目】已知函數(shù)f(x)=x2+3x+a
(1)當a=﹣2時,求不等式f(x)>2的解集
(2)若對任意的x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:當a=﹣2時,不等式f(x)>2可化為x2+3x﹣4>0,

解得{x|x<﹣4或x>1}


(2)解:若對任意的x∈[1,+∞),f(x)>0恒成立,

則a>﹣x2﹣3x在x∈[1,+∞)恒成立,

設g(x)=﹣x2﹣3x

則g(x)在區(qū)間x∈[1,+∞)上為減函數(shù),當x=1時g(x)取最大值為﹣4,

∴a得取值范圍為{a|a>﹣4}


【解析】(1)直接利用二次不等式轉(zhuǎn)化求解即可.(2)利用函數(shù)恒成立,分離變量,利用函數(shù)的最值求解即可.
【考點精析】關于本題考查的二次函數(shù)的性質(zhì)和解一元二次不等式,需要了解當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減;求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=﹣x2+ax﹣ 在區(qū)間[0,1]上的最大值是2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):,)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 是R上的增函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0,其前n項和為Sn , 若S3=12,且2a1 , a2 , 1+a3成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記bn= (n∈N*),且數(shù)列{bn}的前n項和為Tn , 證明: ≤Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有一塊圓心,半徑為200米,圓心角為的扇形綠地,半徑的中點分別為,為弧上的一點,設,如圖所示,擬準備兩套方案對該綠地再利用.

(1)方案一:將四邊形綠地建成觀賞魚池,其面積記為,試將表示為關于的函數(shù)關系式,并求為何值時,取得最大?

(2)方案二:將弧和線段圍成區(qū)域建成活動場地,其面積記為,試將表示為關于的函數(shù)關系式;并求為何值時,取得最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標系,圓的極坐標方程為,且直線與圓相交于不同的, 兩點.

(1)求線段垂直平分線的極坐標方程;

(2)若,求過點與圓相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , , 的中點, 交于點,且平面

1)證明:平面平面

2)若, 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:不等式2x﹣x2<m對一切實數(shù)x恒成立,命題q:m2﹣2m﹣3≥0,如果¬p與“p∧q”同時為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案