已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求實數(shù)的最小值;
(3)若,使成立,求實數(shù)取值范圍.
(1)函數(shù)的單調(diào)遞減區(qū)間是,,遞增區(qū)間是。
(2)的最小值為。
(3)。
【解析】
試題分析:函數(shù)的定義域為,且 2分
(1)函數(shù)
當且時, ;當時,
所以函數(shù)的單調(diào)遞減區(qū)間是,,遞增區(qū)間是 .5分
(2)因為在上為減函數(shù),故在上恒成立
所以當時,
又
故當,即時,
所以于是,故的最小值為 .8分
(3)命題“若,使成立”等價于
“當時,有”
由(2),當時,,所以
問題等價于: “當時,有” 9分
(i)當時,由(2)在上為減函數(shù)
則,故
(ii)當時,由于在上為增函數(shù)
故的值域為,即
由的單調(diào)性值域知
唯一,使,且滿足:
當時,,為減函數(shù);當時,,為增函數(shù);所以,
所以,,與矛盾,不合題意
綜上, 12分
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,不等式恒成立問題。
點評:難題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,是導(dǎo)數(shù)應(yīng)用的基本問題,主要依據(jù)“在給定區(qū)間,導(dǎo)函數(shù)值非負,函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)”。確定函數(shù)的極值,遵循“求導(dǎo)數(shù),求駐點,研究單調(diào)性,求極值”。不等式恒成立問題,往往通過構(gòu)造函數(shù),研究函數(shù)的最值,使問題得到解決。本題的難點在于利用轉(zhuǎn)化思想的靈活應(yīng)用。
科目:高中數(shù)學(xué) 來源: 題型:
1-x2 |
x2-1 |
A、[-1,1] |
B、{-1,1} |
C、(-1,1) |
D、(-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
x |
lnx |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
x |
3 |
4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com