【題目】《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書(shū)中有首古民謠記載了一數(shù)列問(wèn)題:“南山一棵竹, 竹尾風(fēng)割斷, 剩下三十節(jié),一節(jié)一個(gè)圈. 頭節(jié)高五寸,頭圈一尺三.逐節(jié)多三分,逐圈少分三. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠(yuǎn)?”(注釋:第一節(jié)的高度為尺;第一圈的周長(zhǎng)為尺;每節(jié)比其下面的一節(jié)多尺;每圈周長(zhǎng)比其下面的一圈少尺) 問(wèn):此民謠提出的問(wèn)題的答案是

A. B.

C. D.

【答案】B

【解析】因?yàn)槊恐窆?jié)間的長(zhǎng)相差尺,

設(shè)從地面往長(zhǎng),每節(jié)竹長(zhǎng)為,

所以是以為首項(xiàng),以為公差的等差數(shù)列,

由題意知竹節(jié)圈長(zhǎng),后以圈比前一圈細(xì)尺,

設(shè)從地面往爬,每節(jié)節(jié)圈長(zhǎng)為,

是以為首項(xiàng), 為公差的等差數(shù)列,

所以一螞蟻往上爬,遇圈則繞圈,爬到竹子項(xiàng),行程是:

,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內(nèi)接于圓O,且AB為圓O的直徑,點(diǎn)M為線段PB的中點(diǎn).現(xiàn)有以下命題:①BC⊥PC;②OM∥平面APC;③點(diǎn)B到平面PAC的距離等于線段BC的長(zhǎng).其中真命題的個(gè)數(shù)為(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列五個(gè)命題: ①平面內(nèi),到一定點(diǎn)的距離等于到一定直線距離的點(diǎn)的集合是拋物線;
②平面內(nèi),定點(diǎn)F1、F2 , |F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則點(diǎn)M的軌跡是橢圓;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件;
④“若﹣3<m<5,則方程 =1是橢圓”.
⑤已知向量 , 是空間的一個(gè)基底,則向量 + , , 也是空間的一個(gè)基底.
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(1)求f(x)的定義域;
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在區(qū)間(﹣∞,0)上是增函數(shù)的是(
A.
B.y=|x﹣1|
C.y=x2﹣4x+8
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一塊地皮,其中, 是直線段,曲線段是拋物線的一部分,且點(diǎn)是該拋物線的頂點(diǎn), 所在的直線是該拋物線的對(duì)稱軸.經(jīng)測(cè)量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來(lái)建造草坪,其中點(diǎn)在曲線段上,點(diǎn), 在直線段上,點(diǎn)在直線段上,設(shè)km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當(dāng)為多少時(shí),矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), , ,且的最小值為

(1)求的值;

(2)若不等式對(duì)任意恒成立,其中是自然對(duì)數(shù)的底數(shù),求的取值范圍;

(3)設(shè)曲線與曲線交于點(diǎn),且兩曲線在點(diǎn)處的切線分別為, .試判斷, 軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1﹣ (x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是(
A.
B.
C. 且m≠0
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O:x2+y2=16及圓內(nèi)一點(diǎn)F(﹣3,0),過(guò)F任作一條弦AB.
(1)求△AOB面積的最大值及取得最大值時(shí)直線AB的方程;
(2)若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平方線,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案