【題目】若函數(shù)滿足“存在正數(shù),使得對(duì)定義域內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在,使成立”,則稱該函數(shù)為“依附函數(shù)”.
(1)分別判斷函數(shù)①,②是否為“依附函數(shù)”,并說(shuō)明理由;
(2)若函數(shù)的值域?yàn)?/span>,求證:“是‘依附函數(shù)’”的充要條件是“”.
【答案】(1)①是,②不是;理由詳見(jiàn)解析(2)詳見(jiàn)解析.
【解析】
(1)①可取,說(shuō)明函數(shù)是“依附函數(shù)”; ②對(duì)于任意正數(shù),取,此時(shí)關(guān)于的方程無(wú)解,說(shuō)明不是“依附函數(shù)”;
(2)先證明必要性,再證明充分性,即得證.
(1)①可取,則對(duì)任意,存在,使得成立,
(說(shuō)明:可取任意正數(shù),則)
∴是“依附函數(shù)”,
②對(duì)于任意正數(shù),取,則,
此時(shí)關(guān)于的方程無(wú)解,∴不是“依附函數(shù)”.
(2)必要性:(反證法)假設(shè),
∵的值域?yàn)?/span>,∴存在定義域內(nèi)的,使得,
∴對(duì)任意正數(shù),關(guān)于的方程無(wú)解,
即不是依附函數(shù),矛盾,
充分性:假設(shè),取,
則對(duì)定義域內(nèi)的每一個(gè)值,由,可得,
而的值域?yàn)?/span>,
∴存在定義域內(nèi)的,使得,即成立,
∴是“依附函數(shù)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】廠家在產(chǎn)品出廠前,需對(duì)產(chǎn)品做檢驗(yàn),第一次檢測(cè)廠家的每件產(chǎn)品合格的概率為,如果合格,則可以出廠;如果不合格,則進(jìn)行技術(shù)處理,處理后進(jìn)行第二次檢測(cè).每件產(chǎn)品的合格率為,如果合格,則可以出廠,不合格則當(dāng)廢品回收.
求某件產(chǎn)品能出廠的概率;
若該產(chǎn)品的生產(chǎn)成本為元/件,出廠價(jià)格為元/件,每次檢測(cè)費(fèi)為元/件,技術(shù)處理每次元/件,回收獲利元/件.假如每件產(chǎn)品是否合格相互獨(dú)立,記為任意一件產(chǎn)品所獲得的利潤(rùn),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】桂林漓江主要景點(diǎn)有象鼻山、伏波山、疊彩山、蘆笛巖、七星巖、九馬畫(huà)山,小張一家人隨機(jī)從這6個(gè)景點(diǎn)中選取2個(gè)進(jìn)行游玩,則小張一家人不去七星巖和疊彩山的概率為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科院為試驗(yàn)冬季晝夜溫差對(duì)反季節(jié)大豆新品種發(fā)芽的影響,對(duì)溫差與發(fā)芽率之間的關(guān)系進(jìn)行統(tǒng)計(jì)分析研究,記錄了6天晝夜溫差與實(shí)驗(yàn)室中種子發(fā)芽數(shù)的數(shù)據(jù)如下:
日期 | 1月1日 | 1月2日 | 1月3日 | 1月4日 | 1月5日 | 1月6日 |
溫差(攝氏度) | 10 | 11 | 12 | 13 | 8 | 9 |
發(fā)芽數(shù)(粒) | 26 | 27 | 30 | 32 | 21 | 24 |
他們確定的方案是先從這6組數(shù)據(jù)中選出2組,用剩下的4組數(shù)據(jù)求回歸方程,再用選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)的誤差不超過(guò)1粒,則認(rèn)為得到的線性回歸方程是可靠的.請(qǐng)根據(jù)1月2,3,4,5日的數(shù)據(jù)求出關(guān)于的線性回歸方程(保留兩位小數(shù)),并檢驗(yàn)此方程是否可靠.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,和均為以為直角頂點(diǎn)的等腰直角三角形,,,,,為的中點(diǎn).
(1)求證:;
(2)求二面角的大小;
(3)設(shè)為線段上的動(dòng)點(diǎn),使得平面平面,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是給定的平面,設(shè)不在內(nèi)的任意兩點(diǎn)M,N所在的直線為l,則下列命題正確的是( )
A.在內(nèi)存在直線與直線l異面
B.在內(nèi)存在直線與直線l相交
C.在內(nèi)存在直線與直線l平行
D.存在過(guò)直線l的平面與平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為提高市場(chǎng)銷售業(yè)績(jī),促進(jìn)某產(chǎn)品的銷售,隨機(jī)調(diào)查了該產(chǎn)品的月銷售單價(jià)(單位:元/件)及相應(yīng)月銷量(單位:萬(wàn)件),對(duì)近5個(gè)月的月銷售單價(jià)和月銷售量的數(shù)據(jù)進(jìn)行了統(tǒng)計(jì),得到如下表數(shù)據(jù):
月銷售單價(jià)(元/件) | 9 | 10 | 11 | ||
月銷售量(萬(wàn)件) | 11 | 10 | 8 | 6 | 5 |
(Ⅰ)建立關(guān)于的回歸直線方程;
(Ⅱ)該公司開(kāi)展促銷活動(dòng),當(dāng)該產(chǎn)品月銷售單價(jià)為7元/件時(shí),其月銷售量達(dá)到18萬(wàn)件,若由回歸直線方程得到的預(yù)測(cè)數(shù)據(jù)與此次促銷活動(dòng)的實(shí)際數(shù)據(jù)之差的絕對(duì)值不超過(guò)萬(wàn)件,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn):(Ⅰ)中得到的回歸直線方程是否理想?
(Ⅲ)根據(jù)(Ⅰ)的結(jié)果,若該產(chǎn)品成本是5元/件,月銷售單價(jià)為何值時(shí)(銷售單價(jià)不超過(guò)11元/件),公司月利潤(rùn)的預(yù)計(jì)值最大?
參考公式:回歸直線方程,其中,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)生產(chǎn)線上某種零件的質(zhì)量,從產(chǎn)品中隨機(jī)抽取100個(gè)零件,測(cè)量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內(nèi),則認(rèn)為該零件合格,否則認(rèn)為不合格.其中,分別表示樣本的平均值和標(biāo)準(zhǔn)差,計(jì)算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)已知一個(gè)零件的尺寸是,試判斷該零件是否合格;
(2)利用分層抽樣的方法從尺寸在的樣本中抽取6個(gè)零件,再?gòu)倪@6個(gè)零件中隨機(jī)抽取2個(gè),求這2個(gè)零件中恰有1個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)與定點(diǎn)的距離和該動(dòng)點(diǎn)到直線的距離的比是常數(shù).
(1)求動(dòng)點(diǎn)軌跡方程;
(2)已知點(diǎn),問(wèn)在軸上是否存在一點(diǎn),使得過(guò)點(diǎn)的任一條斜率不為0的弦交曲線于兩點(diǎn),都有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com