【題目】已知拋物線的焦點為F,點在此拋物線上,,不過原點的直線與拋物線C交于A,B兩點,以AB為直徑的圓M過坐標原點.
(1)求拋物線C的方程;
(2)證明:直線恒過定點;
(3)若線段AB中點的縱坐標為2,求此時直線和圓M的方程.
【答案】(1);(2)定點;(3),
【解析】
(1)根據(jù)拋物線的定義,將轉(zhuǎn)化為拋物線上的點到準線的距離,從而求出,得到拋物線方程.
(2)直線與拋物線聯(lián)立,得到,然后利用以為直徑的圓過坐標原點,即,代入,求出斜率與截距的關系,得到直線過的定點.
(3)根據(jù)中點坐標,求出直線的斜率,得到直線方程,再求出長度,即圓的半徑,得到圓的方程.
(1)拋物線,其準線為
點在此拋物線上,,
點到準線的距離等于,即,得
所求拋物線方程為
(2)①當直線斜率存在時,設直線的方程為,,易知.
聯(lián)立方程組得,從而可得方程
由題意可知
所以
因為以為直徑的圓過坐標原點,
所以,即,所以,所以.
所以直線的方程為,即,所以直線恒過定點.
②當直線的斜率不存在時,易求得點坐標分別為,,直線也過點.
綜合①②可知,直線恒過定點.
(3)由題意可知直線斜率存在,設線段中點坐標為
由(2)中所得,
則
所以,解得
所以直線方程為.
因為線段中點坐標為,即為圓的圓心坐標,
設圓 .
代入,得
所以圓的方程為
科目:高中數(shù)學 來源: 題型:
【題目】某小學為了解四年級學生的家庭作業(yè)用時情況,從本校四年級隨機抽取了一批學生進行調(diào)查,并繪制了學生作業(yè)用時的頻率分布直方圖,如圖所示.
(1)估算這批學生的作業(yè)平均用時情況;
(2)作業(yè)用時不能完全反映學生學業(yè)負擔情況,這與學生自身的學習習慣有很大關系如果用時四十分鐘之內(nèi)評價為優(yōu)異,一個小時以上為一般,其它評價為良好.現(xiàn)從優(yōu)異和良好的學生里面用分層抽樣的方法抽取300人,其中女生有90人(優(yōu)異20人).請完成列聯(lián)表,并根據(jù)列聯(lián)表分析能否在犯錯誤的概率不超過0.05的前提下認為學習習慣與性別有關系?
男生 | 女生 | 合計 | |
良好 | |||
優(yōu)異 | |||
合計 |
附:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各名,將男性、女性使用微信的時間分成組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)根據(jù)女性頻率分布直方圖,估計女性使用微信的平均時間;
(2)若每天玩微信超過小時的用戶列為“微信控”,否則稱其為“非微信控”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認為“微信控”與“性別”有關?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,過點作直線與拋物線交于,兩點,點滿足,過作軸的垂線與拋物線交于點,若,則點的橫坐標為__________,__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4
(1)求橢圓的方程;
(2)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于、兩點,求與的面積之差的絕對值的最大值,并求取得最大值時直線的方程.為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,底面ABCD是邊長為3的正方形,EFG分別是棱ABPBPC的中點,,.
(Ⅰ)求證:平面EFG∥平面PAD;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com