空間四邊形ABCD中,ADBC2E,F分別是ABCD的中點,EF,則ADBC所成的角為

[  ]

A.30°

B.60°

C.90°

D.120°

答案:B
解析:

  解:cosEMF

  注:考察異面直線所成角的概念,范圍及求法,需注意的是,異面直線所成的角不能是鈍角,而利用平行關系構(gòu)造可求解的三角形,可能是鈍角三角形,望大家注意.同時求角的大小是先證明再求解這一基本過程.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點.
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD中,AD=BC=2,E、F分別是AB、CD的中點,EF=
2
,求AD與BC所成角的大。ā 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形ABCD中,AB、BC、CD的中點分別是P、Q、R,且PQ=
3
,QR=1,PR=2
,那么異面直線BD和PR所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間四邊形ABCD中,AB=CD,且AB與CD成60°角,E、F分別為AC,BD的中點,則EF與AB所成角的度數(shù)為
60°或30°
60°或30°

查看答案和解析>>

同步練習冊答案