如圖,某觀測(cè)站C在城A的南偏西20°方向上,從城A出發(fā)有一條公路,走向是南偏東40°.在C處測(cè)得距離C為31千米的公路上的B處有一輛車正沿著公路向城A駛?cè)ィ撥囆旭偭?0千米后到達(dá)D處停下,此時(shí)測(cè)得C、D兩處距離為21千米.
(1)求cos∠CDB的值;
(2)此車在D處停下時(shí)距城A多少千米?
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:解三角形
分析:(1)在△CDB中,由余弦定理得:cos∠CDB=
CD2+BD2-BC2
2CD×BD
,由此能求出cos∠CDB的值.
(2)sin∠ACD=sin(∠CDB-60°)=
5
3
14
,由正弦定理得:AD=
CD•sin∠ACD
sin∠CAD
,由此能求出此車在D處停下時(shí)距城A處距離.
解答: 解:(1)在△CDB中,
由余弦定理得:
cos∠CDB=
CD2+BD2-BC2
2CD×BD

=
212+202-312
2×21×20
=-
1
7
.(5分)
(2)sin∠ACD=sin(∠CDB-60°)
=sin∠CDBcos60°-cos∠CDBsin60°=
5
3
14
,(7分)
由正弦定理得:AD=
CD•sin∠ACD
sin∠CAD
=
21×
5
3
14
3
2
=15,(9分)
∴此車在D處停下時(shí)距城A處15千米.(10分)
點(diǎn)評(píng):本題考查解三角形在生產(chǎn)生活中的實(shí)際應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理和正弦定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+b
x2+1
是定義在(-∞,+∞)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出f(x)的單調(diào)減區(qū)間,并判斷f(x)有無(wú)最大值或最小值?如有,寫出最大值或最小值.(不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x滿足不等式2(log 
1
2
x)2+7log 
1
2
x+3≤0
(1)求x的取值范圍;
(2)在(1)的條件下,求函數(shù)f(x)=(log2
x
4
)•(log2
x
2
)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA是圓O的切線,A為切點(diǎn),PO與圓O交于點(diǎn)B、C,AQ⊥OP,垂足為Q.若PA=4,PC=2,求AQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不用計(jì)算器求下列各式的值.
(1)(-9.6)0-(
27
8
)-
2
3
+(
3
2
-2;     
(2)lg25+lg4+7log72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x2-2x+m),其中m∈R,且m為常數(shù).
(1)求這個(gè)函數(shù)的定義域; 
(2)函數(shù)f(x)的定義域與值域能否同時(shí)為實(shí)數(shù)集R?證明你的結(jié)論.
(3)函數(shù)f(x)的圖象有無(wú)平行于y軸的對(duì)稱軸?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和,且a32=
1
4
a2a6,S2=
3
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若Sn>120(n∈N*),求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)集合A∪{1,2,3}={1,2,3}寫出所有可能的集合A
(2)集合M={-1,2},N={x|x2-ax+4=0},若N⊆M,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-2,-1},B={-1,2,3},則A∪B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案