如圖,ADBC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是           .

 

【答案】

 

 

【解析】 作BEADE,連接CE,則AD⊥平面BEC,所以CEAD,由題設,BC都是在以AD為焦距的橢球上,且BECE都垂直于焦距AD,所以BE=CE.  取BC中點F,

連接EF,則EFBC,EF=2,,四面體ABCD的體積,顯然,當EAD中點,即B是短軸端點時,BE有最大值為b=,所以.

[評注] 本題把橢圓拓展到空間,對缺少聯(lián)想思維的考生打擊甚大!當然,作為填空押軸題,區(qū)分度還是要的,不過,就搶分而言,膽大、靈活的考生也容易找到突破點:AB=BD(同時AC=CD),從而致命一擊,逃出生天!

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,
SA=AB=BC=2a,AD=a.
(Ⅰ)求點C到平面SBD的距離;
(Ⅱ)求面SCD與面SBA所成的二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
12

(1)求四棱錐S-ABCD的體積;
(2)求證:面SAB⊥面SBC;
(3)求SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個無蓋正方體盒子的表面展開圖,A、B、C、D為其上四個點,則在正方體中,異面直線AD與BC所成的角為
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•宿州一模)如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
(1)求證:BC⊥平面PAB;
(2)求面PCD與面PAB所成銳二面角的正切值;
(3)在PC上是否存在一點E,使得DE∥平面PAB?若存在,請找出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,已知∠ABC=90°,SA⊥平面ABCD,AB=BC=2,AD=1.
(1)當SA=2時,求直線SA與平面SCD所成角的正弦值;
(2)若平面SCD與平面SAB所成角的余弦值為
49
,求SA的長.

查看答案和解析>>

同步練習冊答案