7.設(shè)z1,z2是復(fù)數(shù),給出下列四個命題:
①若|z1-z2|=0,則$\overline{{z}_{1}}$=$\overline{{z}_{2}}$                 ②若z1=$\overline{{z}_{2}}$,則$\overline{{z}_{1}}$=z2
③若|z1|=|z2|,則z1•$\overline{{z}_{1}}$=z2•$\overline{{z}_{2}}$          ④若|z1|=|z2|,則z12=z22
其中真命題的序號是①②③.

分析 由復(fù)數(shù)的模為0,可知復(fù)數(shù)為0判斷①;由復(fù)數(shù)相等,可知其共軛復(fù)數(shù)相等判斷②;由公式$|z{|}^{2}=z•\overline{z}$判斷③;舉例說明④錯誤.

解答 解:①由|z1-z2|=0,得z1-z2=0,∴z1=z2,則$\overline{{z}_{1}}$=$\overline{{z}_{2}}$,故①正確;
②若z1=$\overline{{z}_{2}}$,則$\overline{{z}_{1}}$=$\overline{\overline{{z}_{2}}}={z}_{2}$,故②正確;
③若|z1|=|z2|,則$|{z}_{1}{|}^{2}=|{z}_{2}{|}^{2}$,即z1•$\overline{{z}_{1}}$=z2•$\overline{{z}_{2}}$,故③正確;
④取z1=1,z2=i,滿足|z1|=|z2|,而z12=1,${{z}_{2}}^{2}=-1$,z12≠z22,故④錯誤.
∴正確命題的序號是①②③.
故答案為:①②③.

點評 本題考查命題的真假判斷與應(yīng)用,考查復(fù)數(shù)的基本概念,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=xln(ax+1)(a≠0).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若a>0且滿足:對?x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤ln3-ln2,試比較ea-1與${a^{1-\frac{1}{e}}}$的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三棱錐P-ABC中,PA、PB、PC互相垂直,PA=PB=1,M是線段BC上一動點,若直線AM與平面PBC所成角的正切的最大值是$\frac{\sqrt{6}}{2}$,則三棱錐P-ABC的外接球的表面積是( 。
A.B.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4{a}^{2}}$=1(a>0)的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,}&{x<0}\\{\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點A、B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{4}$,+∞)B.(2,+∞)C.(-∞,2)D.(-1,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為( 。
A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)
患流感未患流感
服用藥218
未服用藥812
根據(jù)表中數(shù)據(jù),通過計算統(tǒng)計量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并參考以下臨界數(shù)據(jù):
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.828
若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯的概率不超過( 。
A.0.05B.0.025C.0.01D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)點有頂點A,O為坐標(biāo)原點,以A為圓心與雙曲線C的一條漸近線交于兩點P,Q,若∠PAQ=60°且$\overrightarrow{OQ}$=2$\overrightarrow{OP}$,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{39}}{6}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{7}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)$\int_0^{\frac{π}{2}}{sinxdx}=K$,則$\int_0^{\frac{5}{2}π}{|sinx|dx}$=( 。
A.KB.2.5KC.4KD.5K

查看答案和解析>>

同步練習(xí)冊答案