【題目】函數(shù)在區(qū)間上的最小值記為.
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;
(2)求的函數(shù)表達(dá)式;
(3)求的最大值.
【答案】(1);(2);(3).
【解析】
(1)將代入函數(shù)的解析式,利用二次函數(shù)的性質(zhì)求出函數(shù)在區(qū)間上的最大值和最小值,從而可得出此時(shí)函數(shù)在區(qū)間上的值域;
(2)對(duì)二次函數(shù)的對(duì)稱軸與區(qū)間的位置關(guān)系進(jìn)行分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,可得出函數(shù)在區(qū)間上的最小值的表達(dá)式;
(3)求出分段函數(shù)在每一段定義域上的值域,可得出該函數(shù)的最大值.
(1)當(dāng)時(shí),,
當(dāng)時(shí),函數(shù)取最小值,即;
當(dāng)時(shí),函數(shù)取最大值,即.
因此,函數(shù)在區(qū)間上的值域?yàn)?/span>;
(2)①當(dāng)時(shí),函數(shù)的對(duì)稱軸,
此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則;
②當(dāng)時(shí),函數(shù)的對(duì)稱軸,
此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
則;
③當(dāng)時(shí),函數(shù)的對(duì)稱軸,
此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,則.
綜上所述,;
(3)①當(dāng)時(shí),;
②當(dāng)時(shí),;
當(dāng)時(shí),.
由①②③可知.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對(duì)分類討論求得函數(shù)在不同取值時(shí)的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時(shí), ,當(dāng)時(shí), ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時(shí), ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .
①當(dāng)時(shí), ,即,這時(shí), ;
②當(dāng)時(shí), ,即,這時(shí), .
綜上, 在上的最大值為:當(dāng)時(shí), ;
當(dāng)時(shí), .
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行統(tǒng)計(jì),如下表:
幾何證 明選講 | 極坐標(biāo)與 參數(shù)方程 | 不等式 選講 | 合計(jì) | |
男同學(xué) | 12 | 4 | 6 | 22 |
女同學(xué) | 0 | 8 | 12 | 20 |
合計(jì) | 12 | 12 | 18 | 42 |
(1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和極坐標(biāo)與參數(shù)方程稱為“幾何類”,把不等式選講稱為“代數(shù)類”,我們可以得到如下2×2列聯(lián)表.
幾何類 | 代數(shù)類 | 合計(jì) | |
男同學(xué) | 16 | 6 | 22 |
女同學(xué) | 8 | 12 | 20 |
合計(jì) | 24 | 18 | 42 |
能否認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān),若有關(guān),你有多大的把握?
(2)在原始統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選答題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名學(xué)委和2名數(shù)學(xué)課代表都在選做“不等式選講”的同學(xué)中.
①求在這名學(xué)委被選中的條件下,2名數(shù)學(xué)課代表也被選中的概率;
②記抽取到數(shù)學(xué)課代表的人數(shù)為,求的分布列及數(shù)學(xué)期望.
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗(yàn)公式,.今將120萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額都不低于20萬元.
(Ⅰ)設(shè)對(duì)乙產(chǎn)品投入資金萬元,求總利潤(rùn)(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配使用資金,才能使所得總利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第屆世界杯足球賽在俄羅斯進(jìn)行,某校足球協(xié)會(huì)為了解該校學(xué)生對(duì)此次足球盛會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校名學(xué)生,并將這名學(xué)生分為對(duì)世界杯足球賽“非常關(guān)注”與“一般關(guān)注”兩類,已知這名學(xué)生中男生比女生多人,對(duì)世界杯足球賽“非常關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)世界杯足球賽“一般關(guān)注”的學(xué)生中男生比女生少人.
(1)根據(jù)題意建立列聯(lián)表,判斷是否有的把握認(rèn)為男生與女生對(duì)世界杯足球賽的關(guān)注有差異?
(2)該校足球協(xié)會(huì)從對(duì)世界杯足球賽“非常關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取人,再從這人中隨機(jī)選出人參與世界杯足球賽宣傳活動(dòng),求這人中至少有一個(gè)男生的概率.
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分,眾數(shù),中位數(shù);
(3)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com