問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計(jì)算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.
【答案】分析:問題1:根據(jù)=為定值,從而所求式子分組求和可求;
問題2:先研究,再分組求和可求.
解答:解:問題1:∵=
…+f(9)+f(10)=9+=(4分)
問題2:=(10分)
f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)
=(14分)
點(diǎn)評:本題的考點(diǎn)是類比推理,關(guān)鍵是理解問題1,發(fā)現(xiàn)解決問題的規(guī)律,從而得解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

問題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋函數(shù)值計(jì)算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實(shí)數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知 T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時,f(x)=2x,求實(shí)數(shù)m的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知當(dāng)x∈[0,4]時,函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域?yàn)橐粋閉區(qū)間,求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級類周期函數(shù),若存在,求出實(shí)數(shù)k和T的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

問題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計(jì)算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計(jì)算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步練習(xí)冊答案