如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一點,且CD平面PAB
(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。
(1)根據(jù)題意,由于PC平面ABC,AB平面ABC,PCAB,同時CD AB,然后得證明。
(2)建立空間直角坐標系來分析平面的法向量以及直線 方向向量來求解線面角
(3)
【解析】
試題分析:解:(1) PC平面ABC,AB平面ABC,PCAB,
CD平面PAB,AB平面PAB, CD AB。又,AB 平面PCB
(2)由(1)AB 平面PCB ,PC=AC=2, 又AB=BC, 可求得BC=
以B為原點,如圖建立空間直角坐標系,
則A(0,,0),B(0,0,0), C(,0,0) P(,0,2)
=(,-,2),=(,0,0) 則=+0+0=2
異面直線AP與BC所成的角為
(3)設(shè)平面PAB的法向量為m=(x,y,z)=(0,-,0),=(,,2)
則,即,得m=(,0,-1)設(shè)平面PAC的法向量為n=(x,y,z)
=(0,0,-2),=(,-,0),則
得n=(1,1,0)cos<m,n>= 二面角C-PA-B大小的余弦值為
考點:空間中點線面 位置關(guān)系的運用
點評:解決該試題的關(guān)鍵是能熟練的運用線面垂直判定定理來證明,以及向量法求解角的問題,屬于基礎(chǔ)題。
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
PA |
AB |
PA |
AC |
AB |
AC |
PA |
AC |
AB |
|
| ||
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com