已知D是△ABC所在平面內(nèi)一點,
AD
=
3
5
AB
+
2
5
AC
,則( 。
分析:
AD
=
3
5
AB
+
2
5
AC
,知
AB
+
BD
=
3
5
AB
+
2
5
AB
+
2
5
BC
,所以
BD
=
2
5
BC
解答:解:∵
AD
=
3
5
AB
+
2
5
AC

AB
+
BD
=
3
5
AB
+
2
5
AB
+
2
5
BC
,
AB
+
BD
=
AB
+
2
5
BC
,
BD
=
2
5
BC

故BD=
2
5
BC.
故選A.
點評:本題考查線段的定比分點,解題時要認真審題,注意平面向量的性質(zhì)的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知D是△ABC所在平面內(nèi)一點,若
AD
=
1
3
AB
+
2
3
AC
,則|
BD
|:|
DC
|
=( 。
A、1:3B、3:1
C、1:2D、2:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知D是△ABC所在平面內(nèi)一點,
AD
=
3
5
AB
+
2
5
AC
,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•丹東模擬)已知D是△ABC所在平面上任意一點,若(
AB
-
BC
)•(
AD
-
CD
)=0,則△ABC一定是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆度遼寧本溪市高一下學期期末考試數(shù)學(理) 題型:選擇題

已知D是ABC所在平面內(nèi)一點, 則(    )

A、    B、   C、   D、

 

查看答案和解析>>

同步練習冊答案