【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)),,.
(1)記函數(shù),且,求的單調增區(qū)間;
(2)若對任意,,,均有成立,求實數(shù)的取值范圍.
【答案】(1),;(2)
【解析】試題分析:(1)求單調區(qū)間的方法是求出的解,確定(或)的取值區(qū)間,即函數(shù)的單調區(qū)間,此可用列表方法得出(同時可得出極值);(2)本小題不等式或有絕對值符號,有兩個參數(shù),由于函數(shù)是增函數(shù),因此設,則有,原問題等價于恒成立,
分兩個問題,恒成立和恒成立,前面轉化為,可以考慮函數(shù)在上是單調遞增的,后面一個轉化為,可以考慮函數(shù)在上是單調遞增的.
試題解析:(1),,
得或,
列表如下:(,)
極大值 | 極小值 |
的單調增區(qū)間為:,,減區(qū)間為;
(2)設,是單調增函數(shù),,
;
①由得:,
即函數(shù)在上單調遞增,
在上恒成立,
在上恒成立;
令,,
時,;時,;
,
;
②由得:,
即函數(shù)在上單調遞增,
在上恒成立,
在上恒成立;
函數(shù)在上單調遞減,當時,,
,
綜上所述,實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知F1,F2分別為雙曲線的左、右焦點,P為雙曲線右支上的任意一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A. (1,+∞) B. (1,2] C. (1,] D. (1,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寶寶的健康成長是媽媽們最關心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調查小組特別調查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:
(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名;
(2)分別計算這5個品牌奶粉2016年所占總銷量(僅指這5個品牌奶粉的總銷量)的百分比(百分數(shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號內;
(3)試以(2)中的百分比作為概率,若隨機選取2名購買這5個品牌中任意1個品牌的消費者進行采訪,記為被采訪中購買飛鶴奶粉的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱臺中, 與分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點, (, ).
(1)設中點為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知在平面直角坐標系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.
(1)求圓及圓在平而直角坐標系下的直角坐標方程;
(2)求圓上任一點與圓上任一點之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4 坐標系與參數(shù)方程
在直角坐標系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標系.
(1)寫出的極坐標方程,并將化為普通方程;
(2)若直線的極坐標方程為與相交于兩點,
求的面積(為圓的圓心).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com