已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)F(x)=f(x)-x2+3x+a在上只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
(1)(-,-1)和(,+∞)(2)-2ln 2≤a<2ln 3-2或a=2ln 2-1.
【解析】(1)f(x)的定義域?yàn)?/span>{x|x≠-1}.
∵f(x)=x2-2x-ln(x+1)2,∴f′(x)=2x-2-=,
解得-<x<-1或x>,
∴f(x)的單調(diào)遞增區(qū)間是(-,-1)和(,+∞).
(2)由已知得F(x)=x-ln(x+1)2+a,且x≠-1,∴F′(x)=1-=.
∴當(dāng)x<-1或x>1時(shí),F′(x)>0;當(dāng)-1<x<1時(shí),F′(x)<0.
∴當(dāng)-<x<1時(shí),F′(x)<0,此時(shí),F(x)單調(diào)遞減;
當(dāng)1<x<2時(shí),F′(x)>0,此時(shí),F(x)單調(diào)遞增.
∵F=-+2ln 2+a>a,F(2)=2-2ln 3+a<a,∴F>F(2).
∴F(x)在上只有一個(gè)零點(diǎn)?或F(1)=0.
由得-2ln 2≤a<2ln 3-2;
由F(1)=0得a=2ln 2-1.
∴實(shí)數(shù)a的取值范圍為-2ln 2≤a<2ln 3-2或a=2ln 2-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題
已知函數(shù)
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存在.請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說(shuō)明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調(diào)區(qū)間;
(III )對(duì)于給定的實(shí)數(shù)成立.求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)、是兩個(gè)非零向量,則使成立的一個(gè)必要非充分的條件是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一文科數(shù)學(xué)試卷(解析版) 題型:填空題
執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一文科數(shù)學(xué)試卷(解析版) 題型:選擇題
圓關(guān)于直線對(duì)稱的圓的方程為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷2練習(xí)卷(解析版) 題型:填空題
已知F1,F2是雙曲線-y2=1的兩個(gè)焦點(diǎn),點(diǎn)P在此雙曲線上,·=0,如果點(diǎn)P到x軸的距離等于,那么該雙曲線的離心率等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷2練習(xí)卷(解析版) 題型:選擇題
已知f(x)是定義域?yàn)閷?shí)數(shù)集R的偶函數(shù),?x1≥0,?x2≥0,若x1≠x2,則<0.如果f=,4f()>3,那么x的取值范圍為( )
A. B.
C. ∪(2,+∞) D.∪
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:填空題
某農(nóng)場(chǎng)給某種農(nóng)作物施肥量x(單位:噸)與其產(chǎn)量y(單位:噸)的統(tǒng)計(jì)數(shù)據(jù)如下表:
施肥量x | 2 | 3 | 4 | 5 |
產(chǎn)量y | 26 | 39 | 49 | 54 |
根據(jù)上表,得到回歸直線方程=9.4x+,當(dāng)施肥量x=6時(shí),該農(nóng)作物的預(yù)報(bào)產(chǎn)量是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F2在x軸上,離心率為.過(guò)F1的直線l交C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為16,那么C的方程為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com