(2010•通州區(qū)一模)設(shè)不等式組
-2≤x≤2
0≤y≤2
確定的平面區(qū)域?yàn)閁,
x-y+2≥0
x+y-2≤0
y≥0
確定的平面區(qū)域?yàn)閂.
(Ⅰ)定義坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”.在區(qū)域U內(nèi)任取一整點(diǎn)Q,求該點(diǎn)在區(qū)域V的概率;
(Ⅱ)在區(qū)域U內(nèi)任取一點(diǎn)M,求該點(diǎn)在區(qū)域V的概率.
分析:(I)由題意知本題是一個(gè)古典概型,用列舉法求出平面區(qū)域U的整點(diǎn)的個(gè)數(shù),平面區(qū)域V的整點(diǎn)個(gè)數(shù),即可求出該點(diǎn)在區(qū)域V的概率;
(II)因滿(mǎn)足:“y≥-x+b”的平面區(qū)域是一個(gè)弓形區(qū)域,欲求y≥-x+b的概率,只須求出弓形區(qū)域的面積與圓的面積之比即可.
解答:解:(Ⅰ)由題意,區(qū)域U內(nèi)共有15個(gè)整點(diǎn),區(qū)域V內(nèi)共有9個(gè)整點(diǎn),設(shè)點(diǎn)Q在區(qū)域V的概率為P(Q),則P(Q)=
9
15
=
3
5
.                  (6分)
(Ⅱ)設(shè)點(diǎn)M在區(qū)域V的概率為P(M),
如圖,易知,
區(qū)域U的長(zhǎng)方形的面積為8,
區(qū)域V的三角形的面積為4,
∴P(M)=
4
8
=
1
2
.                 (13分)
點(diǎn)評(píng):本題主要考查了古典概型和幾何概型,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
m
n
.如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)為幾何概型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•通州區(qū)一模)執(zhí)行圖所示的程序,輸出的結(jié)果為20,則判斷框中應(yīng)填入的條件為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•通州區(qū)一模)用若干個(gè)大小相同,棱長(zhǎng)為1的正方體擺成一個(gè)立體模型,其三視圖如圖3,則此立體模型的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•通州區(qū)一模)設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩個(gè)焦點(diǎn),橢圓C上一點(diǎn)P(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4.又直線(xiàn)l:y=
1
2
x+m與橢圓C有兩個(gè)不同的交點(diǎn)A、B,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)l經(jīng)過(guò)點(diǎn)F1,求△ABF2的面積;
(Ⅲ)求
OA
 • 
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•通州區(qū)一模)設(shè)x>0,y>0,且x+y=1,則xy的最大值為
1
4
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案