精英家教網 > 高中數學 > 題目詳情
(本小題滿分10分)
已知正方體ABCD-A1B1C1D1中,E,F分別是A1B1,B1C1的中點。求證:EF∥平面AD1C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

中,平面的距離為( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,⊿ABE是等腰直角三角形,AB=AE,FA=FE,°

(1)求證:EF平面BCE;
(2)求二面角的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,側面PAD⊥底面ABCD,側棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一點.

(1)若CD∥平面PBO,試指出點O的位置,并說明理由;
(2)求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在四棱錐中,底面為菱形,, , ,的中點,的中點

(Ⅰ)證明:直線;
(Ⅱ)求異面直線AB與MD所成角的大小;
(Ⅲ)求點B到平面OCD的距離。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,在正方體中,E是棱的中點.

(Ⅰ)求直線BE與平面所成的角的正弦值;
(Ⅱ)在棱上是否存在一點F,使平面?證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)如圖,直四棱柱中,底面的菱形,,,點在棱上,點是棱的中點.
(1)若的中點,求證:;
(2)求出的長度,使得為直二面角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(文科)(如右圖)正方體ABCDA1B1C1D1中,ACB1D
成的角為(  )
A、    B    C、     D

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖甲所示,在正方形中,E、F分別是邊的中點,D是EF的中點,現沿SE、SFEF把這個正方形折成一個幾何體(如圖乙所示),使、三點重合于點G,則下面結論成立的是( )
A.SD⊥平面EFG B.GF⊥平面SEF C.SG⊥平面EFG D.GD⊥平面SEF

查看答案和解析>>

同步練習冊答案