(本題滿分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分別是邊A1A2,A2A3上的一點(diǎn),沿線段BC,CD,DB分別將△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一點(diǎn)A。
(Ⅰ)求證:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
(I)由題意 ,故 平面 ,所以 …5分
(II)由條件,如圖建立坐標(biāo)系,平面的法向量為 ,
設(shè)平面 的法向量為 ,又 ,
故有 ,
設(shè)二面角 的大小為 ,則  …………15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m、l是直線,α、β是平面,則下列命題正確的是(   )
A.若l平行于α,則l平行于α內(nèi)的所有直線
B.若mα,lβ,且m∥l,則α∥β
C.若mα,lβ,且m⊥l,則α⊥β
D.若mβ,m⊥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在多面體ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點(diǎn)。
(I)求證:EF//平面ABC;
(II)求證:平面BCD;
(III)求多面體ABDEC的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,

(1)求證: AD⊥面SBC;
(2)求二面角A-SB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已平面,,,的中點(diǎn),
(Ⅰ)求的長(zhǎng);
(Ⅱ)求證:面;
(Ⅲ)求平面與平面相交所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知mn、是三條不重合直線,、、是三個(gè)不重合平面,下列說法:
,; ② ,;③ ,;
,;⑤ ,;⑥ ,.
其中正確的說法序號(hào)是             (注:把你認(rèn)為正確的說法的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線a,b異面,則經(jīng)過a且平行于b的平面有       個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用一個(gè)平面去截一個(gè)幾何體,得到的截面是圓面,這個(gè)幾何體不可能是
A.圓錐B.圓柱C.球D.棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在長(zhǎng)方體ABCD-A1B1C1D1中,經(jīng)過其對(duì)角線BD1的平面分別與棱AA1、CC1相交于E,F(xiàn)兩點(diǎn),則四邊形EBFD1的形狀為_______                

查看答案和解析>>

同步練習(xí)冊(cè)答案