在數(shù)列{an}和{bn}中,an>0,bn>0,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,a1=1,b1=2,a2=3,求an∶bn的值.

答案:
解析:

  思路與技巧:關鍵是求出兩個數(shù)列的通項公式.根據(jù)條件,應注意兩個數(shù)列之間的聯(lián)系及相互轉換.

  

  評析:對于通項公式有關系的兩個數(shù)列的問題,一般采用消元法,先消去一個數(shù)列的項,并對只含另一個數(shù)列通項的關系進行恒等變形,構造一個新的數(shù)列.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當a=2,b=
2
時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列{an}和{bn}中,數(shù)學公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當數(shù)學公式時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年北京市清華附中高三統(tǒng)練數(shù)學試卷6(理科)(解析版) 題型:解答題

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項和;
(Ⅱ)證明:當時,數(shù)列{bn}中的任意三項都不能構成等比數(shù)列;
(Ⅲ)設A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應的集合C;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案