已知f(x+1)=6x+4,則f(-1)=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知,要求f(-1),只要令x+1=-1,求出x,代入即可求解
解答: 解:∵f(x+1)=6x+4,
令x+1=-1,則x=-2
則f(-1)=6×(-2)+4=-8
故答案為:-8
點評:本題主要考查了函數(shù)值的求解,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sina=
1
2
(x+
1
x
)(x≠0),則a的值為( 。
A、2kπ,k∈z
B、kπ,k∈z
C、2kπ+
π
2
,k∈Z
D、kπ+
π
2
,k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,且有(
2
a-c)cosB=bcosC.
(1)求角B的大。
(2)設(shè)向量
m
=(cos2A+1,3cosA-4),
n
=(5,4),且
m
n
,求tan(
π
4
+A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
2x+3
-
1
2-x
,的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在 (0,+∞)上為增函數(shù),則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤x<6},B={x|x2-11x+18<0}
(1)分別求:A∩B,A∪(∁RB);
(2)已知集合C={x|a<x<a+1},若C∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-2,-1,1,2},B={x|x≥2或x≤-1},則A∩B=( 。
A、{-1,1,2}
B、{-2,-1,2}
C、{-2,1,2}
D、{-2,-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x-1)+
3x+5
2-x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,ax2+ax+1>0;命題q:?x∈R,x2-x+a=0,若“p∨q”與“?q”均為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案