(12分)已知函數(shù)
(1)若當(dāng)的表達(dá)式;
(2)求實(shí)數(shù)上是單調(diào)函數(shù).
(1);(2)
【解析】
試題分析:(1)由可求出f(x)的單調(diào)區(qū)間,進(jìn)而得到f(x)在處取得最大值,然后討論和兩種情況下的最大值,最終通過解方程求出a值.
(2)先求出,然后求導(dǎo),利用導(dǎo)數(shù)研究其單調(diào)區(qū)間,由于含有參數(shù)a,所以應(yīng)注意對(duì)a進(jìn)行討論求解.
(1)
單調(diào)遞減,
所以取最大值
①
解得符合題意
②
解得舍去
③
解得舍去
綜上
(2)
①
所以上單調(diào)遞減
②
上不單調(diào)
綜上
考點(diǎn):導(dǎo)數(shù)在研究函數(shù)單調(diào)性,極值,最值當(dāng)中的應(yīng)用.
點(diǎn)評(píng):利用導(dǎo)數(shù)研究單調(diào)區(qū)間,就是根據(jù)導(dǎo)數(shù)大(。┯诹,解不等式求出其單調(diào)增(減)區(qū)間,含參時(shí)要注意對(duì)參數(shù)進(jìn)行討論,求導(dǎo)時(shí)還要注意函數(shù)的定義域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(1)若點(diǎn)()為函數(shù)與的圖象的公共點(diǎn),試求實(shí)數(shù)的值;
(2)設(shè)是函數(shù)的圖象的一條對(duì)稱軸,求的值;
(3)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省高三第一次學(xué)情摸底考試數(shù)學(xué)卷 題型:解答題
(本題滿分13 分)
已知函數(shù)
(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷一 題型:解答題
(15 分)
已知函數(shù)
(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆貴州省高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
、(本小題滿分12分)已知函數(shù)
(1)若,求的零點(diǎn);
(2)若函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn),求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com