【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.
(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有
的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?
優(yōu)秀 | 合格 | 合計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
合計(jì) |
注:,其中
.
(2)若參賽選手共萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);
【答案】(1)見(jiàn)解析;(2)萬(wàn)人.
【解析】分析:(1)根據(jù)二聯(lián)表計(jì)算并且與
比較大小即可.
(2)計(jì)算樣本中的優(yōu)秀率即可估算優(yōu)秀等級(jí)的人數(shù).
詳解:(1)由條形圖可知列聯(lián)表如下:
優(yōu)秀 | 合格 | 合計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
合計(jì) |
,
∴沒(méi)有的把握認(rèn)為優(yōu)秀與文化程度有關(guān).
(2)由條形圖知,所抽取的人中,優(yōu)秀等級(jí)有
人,故優(yōu)秀率為
.
∴所有參賽選手中優(yōu)秀等級(jí)人數(shù)約為萬(wàn)人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,
平面
,
分別為
的中點(diǎn),且
.
(1)求證:平面平面
;
(2)求證:平面P;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系xoy中,橢圓的離心率為
,過(guò)點(diǎn)
.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(2,1),直線與橢圓C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
①求直線的斜率;②若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中t∈R.
(1)當(dāng)t=1時(shí),求曲線在點(diǎn)
處的切線方程;
(2)當(dāng)t≠0時(shí),求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在等腰梯形,
,
,垂足為
,
,
.將
沿
折起到
的位置,使平面
平面
,如圖2所示,點(diǎn)
為棱
的中點(diǎn).
(1)求證:平面
;
(2)求證:平面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)分別是橢圓C:
的左、右焦點(diǎn),過(guò)點(diǎn)
作
軸的垂線,交橢圓
的上半部分于點(diǎn)
,過(guò)點(diǎn)
作
的垂線交直線
于點(diǎn)
.
(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓
的方程;
(2)試判斷直線與橢圓
的公共點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.
(1)求袋中原有白球的個(gè)數(shù);
(2)求取球兩次終止的概率
(3)求甲取到白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前
項(xiàng)和為
,首項(xiàng)
,且
,正項(xiàng)數(shù)列
滿足
,
.
(1)求數(shù)列,
的通項(xiàng)公式;
(2)記,是否存在正整數(shù)
,使得對(duì)任意正整數(shù)
,
恒成立?若存在,求正整數(shù)
的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)
的直角坐標(biāo)為
,曲線
的極坐標(biāo)方程為
,直線
過(guò)點(diǎn)
且與曲線
相交于
,
兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程;
(2)若,求直線
的直角坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com