精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=ax2+bx的圖象過點(-4n,0),且f′(0)=2n(n∈N*).
(1)求f(x)的解析式;
(2)若數列{an}滿足,且a1=4,求數列{an}的通項公式;
(3)對于(2)中的數列{an},求證:<5.
【答案】分析:(1)根據二次函數f(x)=ax2+bx的圖象過點(-4n,0),且f′(0)=2n建立關于a與b的方程組,解之即可;
(2)根據條件可得,然后利用疊加法可求出數列{an}的通項公式;
(3)利用放縮法將通項進行變形,然后利用裂項求和法進行求和,從而證得結論.
解答:解:(1)由f'(x)=2ax+b,∴解之得,
;
(2)∵,

,由累加得
;
(3),當n=1時,顯然成立;
當n≥2時,<5.
點評:本題主要考查了利用疊加法求解數列的通項公式,以及放縮法證明不等式,同時考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區(qū)間[2,+∞)上為增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區(qū)間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案