已知直線m,n,平面α,β,給出下列命題:
①若m⊥α,m⊥β,則α⊥β;②若m∥α,m∥β,則α∥β;
③若m⊥α,m∥β,則α⊥β;④若m∥n,m⊥α,則α⊥n.
其中是真命題的是


  1. A.
    ②③
  2. B.
    ①③
  3. C.
    ②④
  4. D.
    ③④
D
分析:根據(jù)空間中面面垂直的判定方法,面面平行的判定方法,及線面垂直的判定方法逐一對(duì)題目中的四個(gè)結(jié)論進(jìn)行判斷,即可得到答案.
解答:由m⊥α,m⊥β,則α∥β;故①錯(cuò)誤;
若m∥α,m∥β,則α與β可能平行與可能相交,故②錯(cuò)誤;
由面面垂直的判定定理,我們易得③正確;
由線面垂直的第二判定定理,我們易得④正確;
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系,熟練掌握空間線面之間關(guān)系的判定和性質(zhì),建立良好的空間想象能力是解答此類題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知直線m、n和平面α,β,給出下列四個(gè)命題:
(1)若n?α,m∥α,則m∥n;(2)若n?α,m⊥α,則m⊥n;
(3)若m⊥α,m∥β,則α⊥β;④(4)若m?α,m∥β,則α∥β
寫出所有真命題的序號(hào):
(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、已知直線m、n與平面α、β,下列命題正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m,n和平面α,那么m∥n的一個(gè)必要但非充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m,n,平面α,β,給出下列命題:
①若m⊥α,n⊥β,且m⊥n,則α⊥β;
②若m∥α,n∥β,且m∥n,則α∥β;
③若m⊥α,n∥β,且m∥n,則α⊥β;
④若m⊥α,n∥β,且m∥n,則α∥β.
其中正確的命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知直線m、n及平面α、β,則下列命題正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案