已知函數(shù)f(x)=
a
x
-lnx,其中a∈R,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線y=-x.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=1時(shí)的導(dǎo)數(shù),由f′(1)=-a-1=1求得a的值;
(Ⅱ)把(Ⅰ)中求得的a的值代入函數(shù)解析式,求出導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點(diǎn),判斷原函數(shù)的單調(diào)性,從而求得原函數(shù)的極值點(diǎn)并求得極值.
解答: 解:(Ⅰ)∵f(x)=
a
x
-lnx,
f(x)=-
a
x2
-
1
x

∵曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線y=-x,
∴f′(1)=-a-1=1,
∴a=-2;
(Ⅱ)由(Ⅰ)知f(x)=-
2
x
-lnx
,則f(x)=
2
x2
-
1
x
=
2-x
x2
,
令f′(x)=0,解得x=2,
又f(x)的定義域?yàn)椋?,+∞),
當(dāng)x∈(0,2)時(shí),f′(x)>0,
∴f(x)在(0,2)內(nèi)為增函數(shù),
當(dāng)x∈(2,∞)時(shí),f′(x)<0,
∴f(x)在(2,∞)內(nèi)為減函數(shù).
由此知函數(shù)f(x)在x=2處取得極大值,為f(2)=-1-ln2.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,考查了利用導(dǎo)數(shù)求函數(shù)的極值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a=log23,b=log32,c=esinπ,則a,b,c 的大小關(guān)系為(  )
A、a<b<c
B、c<b<a
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的導(dǎo)數(shù)f′(x)的圖象是如圖所示的一條直線l,l與x軸交點(diǎn)坐標(biāo)為(1,0),則f(0)與f(2)的大小關(guān)系為( 。
A、f(0)<f(2)
B、f(0)>f(2)
C、f(0)=f(2)
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-4+
9
x+1
,x∈(0,4),當(dāng)x=a時(shí),f(x)取得最小值b,則函數(shù)g(x)=a|x+b|的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=2an+2n+1+1,bn=an-(n+1)•2n+1,其中n∈N*,n≥1.
(Ⅰ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
為非零向量,已知命題p:若|
a
|=2sin
π
24
,|
b
|=4cos
π
24
,
a
b
=1,則
a
b
的和
π
12
;命題q:若函數(shù)f(x)=(x
a
+
b
)(
a
-x
b
)的圖象關(guān)于y軸對(duì)稱,則
a
=
b
.下列命題正確的是( 。
A、p∧q
B、p∧(¬q)
C、(¬p)∧q
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x-1
,則在點(diǎn)(2,f(2))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各選項(xiàng)中可以構(gòu)成集合的是( 。
A、相當(dāng)大的數(shù)
B、本班視力較差的學(xué)生
C、廣州六中2014級(jí)學(xué)生
D、著名的數(shù)學(xué)家

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2|x|-3.
(1)畫出y=f(x)的圖象,并指出y=f(x)的單調(diào)遞增區(qū)間;
(2)判斷y=f(x)的奇偶性,并求y=f(x)的值域;
(3)方程f(x)=k+1有兩解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案