設(shè)M={面積為1的三角形},N={面積為1的正方形},則


  1. A.
    M、N都是有限集
  2. B.
    M、N都是無限集
  3. C.
    M是有限集,N是無限集
  4. D.
    M是無限集,N是有限集
D
根據(jù)題目中所給集合中元素是否可數(shù),M中面積為1的三角形有無數(shù)個而面積為1的正方形只有一個,故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江西省新余一中2011-2012學(xué)年高二下學(xué)期第一次段考數(shù)學(xué)理科試題 題型:044

已知以點C(t,)(tR),t≠0)為圓心的圓與x軸交于點OA,與y軸交于點O,B,其中O為坐標(biāo)原點.

(1)求證:△OAB的面積為定值;

(2)設(shè)直線y=-2x+4與圓C交于點M,N若|OM|=|ON|,求圓C的方程.

(3)若t>0,當(dāng)圓C的半徑最小時,圓C上至少有三個不同的點到直線ly=k(x-3-)的距離為,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:云南省昆明一中2010屆高三第四次月考、文科數(shù)學(xué)試卷 題型:044

在x軸上方的線段ABy軸正半軸于一點M(0,m),AB所在直線的斜率為k(k>0),點A在第一象限,兩端點A、By軸的距離的差為4k.以y軸為對稱軸,過AO、B三點的拋物線記為C

(Ⅰ)求拋物線C的方程;

(Ⅱ)設(shè)直線AB的方程為x-2y+12=0,過AB兩點的圓與拋物線CA點處有共同的切線,直線ax-by+1=0(a>0,b>0)始終平分該圓的面積,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省開封市2011屆高三第二次質(zhì)量檢測數(shù)學(xué)理科試題 題型:044

設(shè)橢圓C:的右、右焦點分別為F1、F2,上頂點為A,過A與AF2垂直的直線交x軸負(fù)半軸于Q點,且2=0.

(1)求橢圓C的離心率;

(2)若過A、Q、F2三點的圓恰好與直線x-y-3=0相切,求橢圓C的方程;

(3)在(2)的條件下,過右焦點F2的直線交橢圓于M、N兩點,點P(4,0),求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東北三省2011屆京海夏季大聯(lián)考數(shù)學(xué)試題(卷B) 題型:044

如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率e=的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運(yùn)動.

(Ⅰ)當(dāng)m=1時,求橢圓C2的方程;

(Ⅱ)當(dāng)△PF1F2的邊長恰好是三個連續(xù)的自然數(shù)時,求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年普通高等學(xué)校招生全國統(tǒng)一考試山東卷數(shù)學(xué)理科 題型:044

已知動直線l與橢圓C:=1交于P(x1,y1),Q(x2,y2)兩不同點,且△OPQ的面積S△OPQ,其中O為坐標(biāo)原點.

(Ⅰ)證明:x+x和y+y均為定值;

(Ⅱ)設(shè)線段PQ的中點為M,求|OM|·|PQ|的最大值;

(Ⅲ)橢圓C上是否存在三點D,E,G,使得S△ODE=S△DDG=S△OEG?若存在,判斷△DEG的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案